Строение эукариотической клетки таблица

Эукариотическая клетка состоит из оболочки, цитоплазмы и ядра.

Цитоплазма – внутренняя полужидкая среда клетки.

  • Цитоплазма связывает между собой все компоненты клетки
  • За счет микротрубочек («белковых нитей») выполняет функцию скелета клетки, обеспечивает передвижение её частей
  • В цитоплазме происходят основные процессы обмена веществ, например, гликолиз.

Ядро покрыто двойной ядерной оболочкой с порами, внутри находится ядерный сок (кариоплазма), ядрышки и хроматин (это расплетенные [деконденсированные] хромосомы). В ядре происходит репликация и транскрипция, в ядрышке – образование субъединиц рибосом.

Одномембранные органоиды

Двухмембранные органоиды

Митохондрии и пластиды имеют собственную кольцевую ДНК и мелкие рибосомы, за счет них делают сами часть своих белков (полуавтономные органоиды).

Митохондрии принимают участие в клеточном дыхании (окислении органических веществ) – поставляют АТФ (энергию) для жизнедеятельности клетки, являются «энергетическими станциями клетки».

Немембранные органоиды

Рибосомы – это органоиды, которые занимаются синтезом белка. Состоят из двух субъединиц, по химическому составу – из рибосомной РНК и белков. Субъединицы синтезируются в ядрышке. Часть рибосом присоединены к ЭПС, эта ЭПС называется шероховатая (гранулярная).

Клеточный центр состоит из двух центриолей, которые образуют веретено деления во время деления клетки – митоза и мейоза.

Реснички, жгутики служат для движения.

Строение эукариотической клетки.

Цитоплазма.В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили названиеорганеллы, илиорганоиды. В цитоплазме откладываются различные вещества — включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети.

Эндоплазматическая сеть (ЭДС). Эндоплазматическая сеть — это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС — гладкие и шероховатые. На мембранах гладкой эндоплазматической сетинаходятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функцияшероховатой эндоплазматической сети— синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам.Эндоплазматическая сеть— это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомыосуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков иРНК. Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы —полирибосомы. Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи.Основным структурным элементомкомплекса Гольджиявляется гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и упаковываются» в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии.Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которуюмитохондриииграют в клетке.Митохондрииимеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран — наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки — гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене.Основная функция митохондрий— синтезАТФ.

Лизосомы— небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называетсялизисом, поэтому и органоид названлизосомой. Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети.Функции лизосом: внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли.Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называютсяцентриолями. Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро.Ядро — важнейшая составная часть клетки. Оно содержит молекулыДНКи поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившаяядро, не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму.Хроматинсодержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом.Ядрышкопредставляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму.Хроматиномназывают глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

2) 1. Клеточная теория

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.

Роберт Гук первым наблюдал с помощью увеличительных линз подразделение тканей пробки на «ячейки», или «клетки». Его описания послужили толчком для появления систематических исследований анатомии растений, которые подтвердили наблюдения Роберта Гука и показали, что разнообразные части растений состоят из тесно расположенных «пузырьков», или «мешочков». Позднее А. Левенгук открыл мир одноклеточных организмов и впервые увидел клетки животных. Позднее клетки животных были описаны Ф. Фонтана; но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии и клетки связан с развитие микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки – ядро. Все эти многочисленные наблюдения позволили Т. Шванну в 1838 г. сделать ряд обобщений. Он показал, что клетки растений и животных принципиально сходны между собой. «Заслуга Т. Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение». Дальнейшее развитие эти представления получили в работах Р. Вирхова. Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужили главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:

1) Клетка – элементарная единица живого: – вне клетки нет жизни.

2) Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл или органоидов.

3) Клетки сходны – гомологичны – по строению и по основным свойствам.

4) Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.

5) Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.

6) Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.

Представление о клетке как о самостоятельной жизнедеятельной единице было дано еще в работах Т. Шванна. Р. Вирхов также считал, что каждая клетка несет в себе полную характеристику жизни: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне ее».

Современная наука полностью доказала это положение. В популярной литературе клетку часто называют «атомом жизни», «квантом жизни», подчеркивая тем самым, что клетка – это наименьшая единица живого, вне которой нет жизни.

Такая общая характеристика клетки должна в свою очередь опираться на определение живого – что такое живое, что такое жизнь. Очень трудно дать окончательное определение живого, жизни.

М.В. Волькенштейн дает следующее определение жизни: «живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими веществами которых являются белки и нуклеиновые кислоты». Живому свойствен ряд совокупных признаков, таких, как способность к воспроизведению, использование и трансформация энергии, метаболизм, чувствительность, изменчивость. И такую совокупность этих признаков можно обнаружить на клеточном уровне. Нет меньшей единицы живого, чем клетка. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, выделенные актомиозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки прекрасно «работают» многие ферменты, участвующие в синтезе или распаде сложных биоорганических молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок, разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т.д. Можно ли считать все эти клеточные компоненты, структуры, ферменты, молекулы живыми? Можно ли считать живым актомиозиновый комплекс? Думается, что нет, хотя бы потому, что он обладает лишь частью набора свойств живого. То же относится и к остальным примерам. Только клетка как таковая является наименьшей единицей, обладающей всеми вместе взятыми свойствами, отвечающими определению «живое».

3) Основу поверхностного аппарата клеток (ПАК) составляет наружная клеточная мембрана, или плазмалемма. Кроме плазмалеммы в ПАК имеется надмембранный комплекс, а у эукариот — и субмембранный комплекс. Основными биохимическими компонентами плазмалеммы (от греч. плазма — образование и лемма — оболочка, корка) являются липиды и белки. Их количественное соотношение у большинства эукариот составляет 1:1, а у прокариот в плазмалемме преобладают белки. В наружной клеточной мембране обнаруживается небольшое количество углеводов и могут встречаться жироподобные соединения (у млекопитающих — холестерол, жирорастворимые витамины). В 1925 г. Е. Гортер и Ф. Грендел (Голландия) предположили, что основу мембраны составляет двойной слой липидов — билипидный слой. В 1935 г. Дж.Даниэли и Г.Даусон предложили первую пространственную модель организации мембран, получившую название «сэндвич», или «бутербродная » модель. По их мнению, основой мембраны является билипидный слой, а обе поверхности слоя покрыты сплошными слоями белков. Дальнейшее изучение клеточных мембран, включая плазмалемму, показало, что почти во всех случаях они имеют сходное строение. В 1972 г. С.Зингер и Г.Николсон (США) сформулировали представление о жидкостно-мозаичном строении клеточных мембран (рис.). Согласно этой модели, основу мембран составляет билипидный слой, но белки в нем расположены отдельными молекулами и комплексами, т.е. мозаично (от франц. mosaique — мозаика; изображение, составленное из отдельных кусков). В частности, молекулы интегральных (от лат. интегер — целый) белков могут пересекать билипидный слой, полуинткгральных — частично погружаться в него, а периферических (от греч. периферия — окружность) — располагаться на его поверхности (рис.). Современная молекулярная биология подтвердила справедливость жидкостно-мозаичной модели, хотя были обнаружены и другие варианты клеточных мембран. В частности, у архебактерий основу мембраны составляет монослой сложного по строению липида, а некоторые бактерии содержат в цитоплазме мембранные пузырьки, стенки которых представлены белковым монослоем. Надмембранный комплекс поверхностного аппарата клеток характеризуется многообразием строения (рис.). У прокариот надмембранный комплекс в большинстве случаев представлен клеточной стенкой различной толщины, основу которой составляет сложный гликопротеин муреин (у архебактерий — псевдомуреин). У целого ряда эубактерий наружная часть надмембранного комплекса состоит из еще одной мембраны с большим содержанием липополисахаридов.У эукариот универсальным компонентом надмембранного комплекса являются углеводы — компоненты гликолипидов и гликопротеинов плазмалеммы. Благодаря этому его исходно называли гликокаликсом (от греч. гликос — сладкий, углевод и лат. каллум — толстая кожа, оболочка). Кроме углеводов, в состав гликокаликса относят периферические белки над билипидным слоем. Более сложные варианты надмембранного комплекса встречаются у растений (клеточная стенка из целлюлозы), грибов и членистоногих (наружный покров из хитина). Субмембранный (от лат. суб — под) комплекс характерен только для эукариотических клеток. Он состоит из разнообразных белковых нитевидных структур: тонких фибрилл (от лат. фибрилла — волоконце, ниточка), микрофибрилл (от греч. микрос — малый), скелетных (от греч. скелетон — высушенное) фибрилл и микротрубочек. Они связаны друг с другом белками и формируют опорно-сократительный аппарат клетки. Субмембранный комплекс взаимодействует с белками плазмалеммы, которые, в свою очередь, связаны с надмембранным комплексом. В результате ПАК представляет собой структурно целостную систему. Это позволяет ему выполнять важные для клетки функции: изолирующую, транспортную, каталитическую, рецепторно-сигнальную и контактную.

4) В мембранах содержатся также гликолипиды и холестерол. Гликолипиды— это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, угликолипидовимеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

Органоиды клетки. Строение и функции.

Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой – жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.

Клеточная теория. Особенности строения прокариотических и эукариотических клеток. Основные положения современной клеточной теории.

Kaz-Ekzams.ru > Биология > Учебная литература по биологии > Биология-репетитор > Клеточная теория. Особенности строения прокариотических и эукариотических клеток. Основные положения современной клеточной теории.

Основные положения современной клеточной теории:

  • все простые и сложные организмы состоят из клеток, способных к обмену с окружающей средой веществами, энергией, биологической информацией;
  • клетка — элементарная структурная, функциональная и генетическая единица живого;
  • клетка — элементарная единица размножения и развития живого;
  • в многоклеточных организмах клетки дифференцированы по строению и функциям. Они объединены в ткани, органы и системы органов;
  • клетка представляет собой элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению.

В соответствии с особенностями строения ядра и цитоплазмы различают два типа клеток — клетки прокариот и клетки эукариот.

Сравнительные данные прокариот и эукариот

Структура Эукариотические клетки Прокариотические клетки
Клеточная стенка Есть у растений, грибов, отсутствует у животных. Состоит из целлюлозы (у растений) или хитина (у грибов) Есть. Состоит из муреина — смеси углеводных и белковых молекул
Клеточная мембрана Есть. Органоиды мембранные и немембранные Есть. Органоиды немембранные
Ядро Есть. Окружено мембраной Нуклеарная область, мембраны нет
Хромосомы Линейные. Содержат белок. Транскрипция происходит в ядре, трансляция — в цитоплазме Кольцевые. Белка практически не содержат. Транскрипция и трансляция происходят в цитоплазме
Есть Нет
Структура Эукариотические клетки Прокариотические клетки
Рибосомы Есть Есть, но они меньше по размеру
Комплекс Гольджи Есть Нет
Лизосомы Есть Нет
Митохондрии Есть Нет
Вакуоли Есть у большинства клеток Нет
Реснички и жгутики Есть у всех организмов, кроме высших растений. Состоят из белка — тубулина Есть у некоторых бактерий. Состоят из белка-флагелина
Хлоропласты Есть у растительных клеток Нет. Фотосинтез зеленых и пурпурных протекает в бактериохлорофиллах (пигментах)
Микротрубочки, микрофиламенты Есть Нет
Способность к фагоцитозу Есть Нет

Строение эукариотических клеток

Строение и состав

Наружная и складчатая внутренняя плазматические мембраны. В кристах множество ферментов, участвующих в реакциях цикла Кребса

Микро-трубочки и микрофиламенты

Структура Функция структуры Строение и состав
Плазматическая мембрана Избирательно регулирует обмен веществ между клеткой и внешней средой. Обеспечивает контакт с соседними клетками Двойной слой фосфолипидов с пронизывающими его молекулами белков. На внешней поверхности расположены гликопротеины и гликолипиды.
Регулирует клеточную активность. Содержит ДНК, хранящую информацию о специфической последовательности аминокислот в белке. Мембрана ядра через ЭПС связана с наружной мембраной Ядерная мембрана, окружающая хромосомы. Хроматин, представляющий собой комплекс из ДНК и белка, кариоплазма
Хромосомы Хранение и распределение генетической информации Две хроматиды, соединенные в области центромеры. Состоят из ДНК и белка
Сборка рибосомных субъединиц, синтез рРНК РНК и белки
Митохондрии Осуществление аэробного дыхания. Ответственны за синтез АТФ в ходе окислительного фосфорилирования. Синтезируют стероидные гормоны
Рибосомы Сборка белковых молекул Две субъединицы (большая и малая), состоящие из белка и РНК
Эндоплазматический ретикулум Транспорт веществ, связь органоидов клетки. На гранулярной ЭПС находятся рибосомы. Гладкая ЭПС содержит ферменты синтеза липидов Одномембранная система каналов, трубочек, цистерн, полостей
Аппарат Гольджи Преобразование, накопление, сортировка и упаковка белков и липидов. Образование секреторных пузырьков, транспортирующих продукты внутри клетки. Синтез полисахаридов и формирование первичных лизосом Образован плоскими цистернами, состоящими из плазматических мембран. От краев цистерн отшнуровываются пузырьки
Лизосомы Внутриклеточное переваривание макромолекул пищи, инактивация ферментов до выхода их в кислую среду Одномембранные структуры, внешне напоминающие пузырьки и содержащие концентрированные гидролитические (в водной среде) ферменты. В большом количестве содержатся в лейкоцитах
Клеточная стенка Опорная и защитная оболочка растительных клеток Целлюлоза
Пластиды Фотосинтез, запасание питательных веществ Мембраны, хлорофилл, ксантофилл, каротиноиды, ДНК
Вакуоли Запасание жидкости, питательных веществ у растений, пищеварение и выделение у животных Мембраны, белки, жиры, углеводы, вода, соли
Образование цитоскелета клетки, центриолей, базальных телец, жгутиков, ресничек; обеспечивают внутриклеточное движение, например митохондрий Белковые субъединицы, образующие длинные тонкие структуры, образующие внутренний скелет клетки, помогающий сохранять ее форму
Реснички, жгутики Перемещение клеток, формирование потоков жидкости у поверхности клеток.
Цитоплазма Обмен веществ, перемещение клеточных структур, их объединение в систему Гиалоплазма — водный раствор неорганических и органических соединений

Функции эукариотических клеток:

  • клетки одноклеточных организмов осуществляют все функции, характерные для живых организмов, — обмен веществ, рост, развитие, размножение; способны к адаптации;
  • Клетки многоклеточных организмов дифференцированы по строению, в зависимости от выполняемых ими функций; эпителиальные, мышечные, нервные, соединительные ткани формируются из специализированных клеток.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Статья написана по материалам сайтов: studfiles.net, www.calc.ru, kaz-ekzams.ru.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий