Теплообменник труба в трубе

Подобная схема используется для того, чтобы нагреть или охладить теплоноситель. Применяется она и в промышленности. Каков же принцип действия системы, конструктивные особенности и свойства?

Общая информация

Теплообменник труба в трубе необходим для эффективного отбора или передачи тепловой энергии. В зависимости от конечного результата устройства подразделяют на два типа:

Разделяются они и по виду транспортировки тепла. Они могут быть поверхностными, регенеративными и смесительными. Расчёт каждого из них производится по особым методикам. Фото систем представлены на нашем сайте. Принцип действия каждой разновидности следующий.

Теплообменник труба в трубе поверхностного исполнения выполняется из двух теплоносителей, разделенных перегородкой. Через неё и производится обмен энергией. Регенеративные аналоги работают по принципу разделения двух периодов. Это происходит посредством охлаждения с последующим нагреванием специальных насадок. Смесительные системы характеризуются тем, что обмен теплоэнергией осуществляется с помощью непосредственного контакта рабочих жидкостей.

Конструктивные особенности

Теплообменник труба в трубе следует отнести к устройствам поверхностного вида. Состоит он из звеньев, которые между собой соединены особым образом. Их расположение вертикальное. Расчёт конструкции производится квалифицированным персоналом. При этом специалисты опираются не только на знания и опыт, но и на типовые чертежи. Некоторые из них представлены на фото.

Теплообменник труба в трубе – это устройство, состоящее из вмонтированных друг в друга труб. В процессе работы между ними производится обмен энергией. Так как наружная труба большего сечения, она соединяется с внешними аналогами. Внутри неё установлены другие трубки, которые также участвуют в теплообмене.

О преимуществах и недостатках

Теплообменник труба в трубе прост, этим и обусловлена его колоссальная популярность. Первое, что привлекает инженеров, – высокая скорость транспортировки рабочих жидкостей. Это осуществляется с помощью оптимального подбора сечения труб.

Другой момент – изготовить теплообменник труба в трубе очень просто. Однако его расчёт обусловлен рядом профессиональных подходов. При обслуживании систем важно производить своевременную чистку. Конструкция устройство позволяет это сделать без особых трудозатрат. Радует и оптимальный срок службы, а также универсальность схемы, ведь теплоносителем может быть не только жидкий агент, но и парообразный.

Конечно, в системе есть минусы, и инженеры, производя расчёт, их учитывают. Эксплуатация осложняется тем, что габариты конструкции большие, поэтому требуется правильная организация места, где систему труба в трубе планируется установить. Также не радует и высокая стоимость, а также сложности при расчёте конструкции.

Особенности проектирования

При расчёте инженеры выбирают материал, из которого будут производиться трубы, высчитывают предельные величины. Так как большинство теплоносителей становятся причиной образования ржавчины внутри системы, преимущественно используются нержавеющие материалы. Это может быть не только медь, но и специальная сталь.

Габариты же конструкции обусловлены величиной температур, тепловой нагрузкой, коэффициентами теплообмена, теплопередачи и прочими величинами. Инженеры также осуществляют расчёты гидравлических аспектов. Выявляется степень сопротивления материалов нагрузке и пр.

Только профессиональный подход

При расчёте теплообменника труба в трубе задействован ни один специалист. К вопросу проектирования осуществляется комплексный подход. Квалифицированный персонал не только рассчитывает оборудование, но и производит анализ актуальности результатов. Некоторые установки разрабатываются продолжительное время, так как по итогам испытаний конструкции адаптируются, достигается высокая степень соответствия исходным условиям.

Теплообменник «труба в трубе» — конструкция и расчет

Типовые теплообменники (труба в трубе) предназначены для решения всего одной задачи – изменения температуры транспортируемой среды. Проще говоря: теплообменник нужен для охлаждения или нагрева прокачиваемых сквозь трубопровод жидкостей или газов.

Потребности в контроле температуры транспортируемой среды могут возникнуть в процессе эксплуатации любого трубопровода. В итоге, теплообменники типа «труба в трубе» можно встретить и в домашних сетях, и в промышленных линиях. Поэтому в данной статье мы рассмотрим конструкцию и методику расчета подобных устройств. С учетом распространенности теплообменников эта информация будет интересна самому широкому кругу читателей.

Теплообменные устройства: общие сведения

Работа теплообменника связана с необходимостью нагреть или охладить среду, циркулирующую в трубопроводе.

Поэтому все подобные устройства делятся на:

  • Охладители – аппараты, снижающие температуру транспортируемой среды, за счет нагрева жидкости или газа в теплообменнике;
  • Нагреватели – аппараты, повышающие температуру транспортируемой среды, за счет охлаждения циркулирующей в теплообменнике среды.
Это интересно:  Заряд аккумулятора по напряжению таблица

Схема работы первых устройств – охладителей – предполагает введение в теплообменник жидкости или газа с очень низкой температурой. И после контакта холодного теплообменника и разогретой среды в трубопроводе их температуры начнут выравниваться – циркулирующий в теплообменной сети теплоноситель нагреется, а прокачиваемая по трубопроводу среда – охладится.

Схема работы вторых устройств – нагревателей – основана на обратном эффекте. То есть, в теплообменник подается перегретая жидкость (или газ), которая нагреет транспортируемую по трубопроводу среду.

Виды теплообменников

По конструктивному исполнению теплообменные аппараты первого и второго типа (охладители и нагреватели) делятся на:

    Поверхностные устройства, теплообмен в которых происходит за счет контакта сред через стенку (поверхность).

Причем самым простым и эффективным вариантом обеспечивающего тепловой обмен устройства является поверхностная схема типа «труба в трубе». И далее по тексту мы рассмотрим конструкцию именно такого аппарата.

Конструкция теплообменника (труба в трубе)

Спроектированные по принципу «труба в трубе» аппараты характеризуются следующими особенностями конструкции:

  • Во-первых, такие устройства предполагает пакетную компоновку, когда несколько объединенных звеньев располагаются практически бок обок.
  • Во-вторых, как устройства поверхностного типа, придерживающиеся принципа труба в трубе теплообменники, собираются путем инсталляции в трубопровод пакета труб меньшего диаметра, сквозь который будет пропускаться охлаждающая или нагревающая среда.
  • В-третьих, исходя из принципа непрерывности, трубы теплообменников должны пронизывать внутреннее пространство трубопровода по всей длине транспортирующей системы. Причем для обеспечения ремонта сборку труб и теплообменника, и трубопровода реализуют с помощью разъемных соединений. То есть, всю конструкцию можно разобрать и собрать в любой момент.
  • В-четвертых, сечение трубы в транспортирующем канале должно быть больше сечения трубы в канале теплообменника. Ведь помимо возможности инсталлировать теплообменник в трубопровод такое соотношение габаритов позволяет разогнать теплоноситель в охлаждающей или нагревающей системе до максимальной скорости.
  • В-пятых, непрерывная схема «труба в трубе» дает возможность прокачивать сквозь систему любой объем транспортируемой жидкости или теплоносителя.

Преимущества теплообменников «труба в трубе»

Опираясь на описанные выше конструктивные особенности, подобные теплообменники приобретают следующий набор преимуществ:

  • Такой аппарат гарантирует оптимальный режим транспортировки жидкости. Ведь скорость течения теплоносителя и транспортируемой среды может быть практически любой. Ну а возможные недостатки можно откалибровать путем подбора диаметров труб теплообменника прямо в процессе сборки.
  • Теплообменные аппараты подобного типа не требуют особого внимания в процессе эксплуатации – чистка труб теплообменника и транспортной системы выполняется за считанные минуты. Кроме того, в случае поломки эти устройства можно отремонтировать за пару часов, путем демонтажа поврежденного модуля (отрезка) и установки новой детали с аналогичными характеристиками.
  • Подобная конструкция не имеет ограничений по типу среды, используемой в системе транспортировки или теплообмена. То есть, сквозь подобный теплообменник можно прокачивать и воду, и пар, и вязкие жидкости, и газообразные среды.

Недостатки теплообменников

Впрочем, упомянутые выше особенности конструкции теплообменника являются причиной не только достоинств, но и недостатков.

Причем к числу недостатков схемы «труба в трубе» можно причислить следующее:

  • Довольно значительные габариты системы. Ведь внутри транспортирующего канала размещается трубопровод теплообменника, в итоге, для сохранения прежней пропускной способности нужно увеличить диаметр основной (наружной) трубы.
  • Высокую стоимость подобной системы. На создание такого теплообменника расходуется достаточно большой объем металла. А сам процесс сборки систем типа труба в трубе» требует привлечения квалифицированных и дорогостоящих специалистов.
  • Сложный процесс расчета и проектирования подобных конструкций.

Причем последнему пункту следует уделить особое внимание. Поэтому далее по тексту мы рассмотрим нюансы процесса расчета и проектирования таких аппаратов.

Расчет и проектирование теплообменников «труба в трубе»

Процесс создания любого аппарата начинается с расчета его рабочих параметров и последующего проектирования устройства, способного реализовать эти параметры на практике.

Поэтому расчет теплообменника труба в трубе начинается с подбора конструкционного материала для системы транспортировки охлаждающей или нагревающей жидкости. Ведь теплопроводность трубы теплообменника будет зависеть именно от типа материала, из которого изготовят данную деталь.

Помимо конструкционного материала в проектировании теплообменников придется принять во внимание еще и такие параметры, как:

  • Площадь поверхности теплообменника, которая зависит от габаритов «внутренней» трубы. Причем, чем больше площадь, тем эффективнее теплообмен.
  • Разницу в температурах теплоносителя и транспортируемой среды. С ростом этой величины увеличивается эффективность теплообмена.
  • Коэффициенты теплоотдачи и теплопередачи в системе, которые будут зависеть от множества параметров.
  • Гидравлические характеристики работы системы транспортировки теплоносителя, зависящие от формы трубопроводов.
  • Механическую прочность внешней и внутренней трубы, определяемую характеристиками трубного проката, задействованного в процессе сборки трубопровода.
Это интересно:  Операция для кошек по удалению яичников

Словом, расчет и проектирование – это очень сложная задача, выполнить которую может далеко не каждое конструкторское бюро. Поэтому в процессе сборки бытовых теплообменников лучше всего ориентироваться на табличные и справочные данные, увязывающие предполагаемые рабочие параметры с реальными габаритами труб и формами трубопроводов.

1.4 Теплообменные аппараты типа -«труба в трубе»

Теплообменные аппараты «труба в трубе» используют главным об­разом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют свое­го агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Так­же их используют для загрязненных коксообразующими веществами и механическими примесями теплоносителей, в которых обеспечивает­ся хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости и турбулентность потока уменьшают возможность отложения на стен­ках труб кокса или других образований.

а — общий вид; б — вариант жесткого крепления труб; в — вариант крепления труб с компенсирующим устройством

Рисунок 19 -Теплообменник типа «труба в трубе»

По сравнению с кожухотрубчатыми теплообменники «труба в трубе» имеют меньшее гидравлическое сопротивление межтрубного про­странства. Однако при равных теплообменных характеристиках они ме­нее компактны и более металлоемки, чем кожухотрубчатые. Теплообменники «тру­ба в трубе» могут быть разборными или нераз­борными, одно- и много­поточными.

Однопоточный нераз­борный теплообменник (рисунок 20) состоит из от­дельных звеньев, в каждый из которых входят трубы наружная (или кожуховая) 1 и внутренняя (или теплообменная) 2. Наруж­ная труба двумя привар­ными кольцами связана с внутренней трубой 2 в зве­но. Звенья, в свою очередь, собраны в вертикальный Ряд и составляют теплообменную секцию. При этом внутренние трубы соединены между собой коленами 3, а наружные — штуцерами 4 на фланцах или сваркой. Звенья закреплены скобами на металлическом каркасе 5.

Неразборные теплообменники являются кон­струкцией жесткого типа, поэтому при разности температур более 70 °С их не используют. При большей разности температур труб, а также при необходимости механической очистки межтрубного пространства при­меняют теплообменники с компенсирующим устройством на наружной трубе. В этом случае кольцевую щель между трубами с одной стороны наглухо заваривают, а с другой — уплотняют сальником 6.

Однопоточные неразборные теплообменники изготовляют из труб длиной 3. 12 м с диаметром внутренних труб 25. 159 мм и наружных соответственно 48. 219 мм на условное давление для наружных труб до 6,4 МПа и для внутренних до 16 МПа. В разборных конструкциях теплообменников обеспечивается компенсация деформаций теплообменных труб. На рис. 2.50 показа­на конструкция разборного многопоточного теплообменника «труба в трубе», конструктивно напоминающего кожухотрубчатый тепло­обменник типа ТУ.

Аппарат состоит из кожуховых труб 5, развальцованных в двух трубных решетках: средней 4 и правой 7. Внутри кожуховых труб раз­мещены теплообменные трубы 6, один конец которых жестко связан с левой трубной решеткой 2, а другой — может перемещаться. Сво­бодные концы теплообменных труб попарно соединены коленами 8 и закрыты камерой 9. Для распределения потока теплоносителя по теплообменным трубам служит распределительная камера 1, а для распределения теплоносителя в межтрубном пространстве — рас­пределительная камера 3. Пластинами 11 кожуховые трубы жестко связаны с опорами 10.

Теплообменник имеет два хода по внутренним трубам и два по на­ружным. Узлы соединения теплообменных труб с трубной решеткой (узел I) и с коленами (узел II) уплотнены за счет прижима и деформа­ции полушаровых ниппелей в конических гнездах.

Эти аппараты могут работать с загрязненными теплоносителями, так как внутреннюю поверхность теплообменных труб можно подвер­гать механической очистке. Поскольку возможность температурных удлинений кожуховых труб из-за жесткого соединения их с опорами ограниченна, перепад температур входа и выхода среды, текущей по кольцевому зазору, не должен превышать 150 °С.

Рисунок 20 -Разборный двухпоточный теплообменник типа «труба в трубе»

Теплообменник типа труба в трубе: конструктивные особенности, расчет

Теплообменник типа труба в трубе, принцип работы которого основан на постоянном контакте теплоносителя с обрабатываемой жидкостью, используется в технологических системах для нагревания или охлаждения теплоносителя с небольшой поверхностью теплообмена на предприятиях газовой, нефтяной, нефтехимической и химической промышленности. Применяются теплообменники с такой конструкцией и в пищевой промышленности, например в виноделии и при производстве молочных продуктов.

Это интересно:  Лада нива 2019 в новом кузове

Конструктивные особенности теплообменников

Надежность работы теплообменников, изготовленных по типу труба в трубе, удобство их эксплуатации основано на таких факторах как:

  • компенсация температурных деформаций;
  • плотность и прочность разъемных фланцевых соединений;
  • удобство при техническом обслуживании агрегата.

Основным элементом теплообменника данного типа является устройство, которое состоит из двух труб, имеющих разный диаметр.

Значительная разница в диаметре позволяет вставить одну трубу в другую по продольной оси, оставляя промежуток между стенками труб для свободного перемещения теплоносителя. Подключение к системе обеспечивает постоянный пропуск противотоком обрабатываемого продукта и горячей воды, пара или холодного рассола.

Конструкция теплообменника состоит из нескольких прямолинейных участков труб, расположенных друг над другом. Внутренние трубы с меньшим диаметром последовательно соединены друг с другом дугами в полуокружность (переходными каналами), которые крепятся фланцевым соединением. Соединение наружных труб выполняется специальными патрубками, позволяющими продукту свободно перемещаться по секции. Величина элементов труб и их количество в одном звене может быть различным, что определяется в первую очередь необходимой производительностью теплообменника.

Расчет теплообменника

Теплообменный аппарат проектируется на основании:

  • Теплового расчета с определением площадей поверхности теплообменника,
  • Конструктивного расчета основных геометрических параметров агрегата и его узлов,
  • Гидравлического расчета, определяющего потерю напора,
  • Расчета тепловой изоляции оборудования,
  • Подсчета экономической эффективности.

Теплообменник труба в трубе

Технические характеристика теплообменников могут сильно различаться, что зависит от области их использования, модели и производственной потребности технологического процесса линии или системы. При расчете агрегата принимается во внимание основное его назначение – обмен тепловыми параметрами теплоносителя и обрабатываемой среды. На основе физических свойств теплоносителей выполняется расчет теплообменника труба в трубе с учетом различных характеристик агрегата и системы в целом. Для этого оцениваются следующие параметры:

  • уровень тепловых потерь,
  • технологическая и тепловая схема,
  • совокупность сопутствующих факторов,
  • устанавливается расход теплоносителя,
  • определяются величины начальной и конечной температуры,
  • определяется тепловая нагрузка,
  • составляется баланс работоспособности системы.

Кроме этого необходимо учитывать степень агрессивного воздействия среды на материал, из которого изготавливается теплообменник, токсичность и физико-химические свойства. Важной частью расчета является определение направления движения теплоносителя.

Наиболее предпочтителен вариант противоточного направления движения, так как это дает возможность повысить тепловую производительность, уменьшив рабочую поверхность оборудования.

При противоточном движении перепады температур в теплоносителях увеличиваются, уменьшается расход энергии. Порядок расчета производительности теплообменников считается сложной технической задачей, поэтому для того чтобы изготовить теплообменник типа «труба в трубе» своими руками, потребуется не только желание, но и достаточно большой багаж профессиональных знаний.

Производство теплообменников

В промышленном производстве теплообменников используются современные технологии и высокоточное оборудование. Сложный технологический процесс производства включает в себя десятки различных операций. Для изготовления используется высококачественная листовая сталь, обладающая устойчивостью к агрессивным средам и воздействию высоких температур. Использование автоматизированных сварочных линий, математическая точность и строгий контроль на всех участках производства обеспечивают высокое качество продукции.
Теплообменники выпускаются в следующих вариантах:

  • с приварными двойниками,
  • агрегаты со съемными двойниками.

По типам теплообменники делят на:

  • разборные агрегаты, малогабаритные тип ТТРМ,
  • однопоточные, неразборного типа ТТОН,
  • однопоточные, разборного типа ТТОР,
  • многопоточные разборного типа ТТМ.

Схема теплообменника труба в трубе

Преимущества теплообменных агрегатов «труба в трубе»

Сравнительно высокая стоимость на единицу поверхности процесса теплообмена компенсируется разнообразием компоновок и возможностью сборки агрегатов из стандартных элементов на месте установки агрегата. Это также дает возможность наращивания или уменьшения числа секций при изменении параметров технологического процесса.

Для обеспечения эффективной очистки внутренней поверхности теплообменников используется возможность выбора необходимых размеров входных и выходных патрубков. Конструкция агрегатов обеспечивает контроль по распределению потоков теплоносителя на каждый канал, это особенно важно в процессе охлаждения вязких жидкостей при работе одного насоса в группе агрегатов.

Статья написана по материалам сайтов: vsetrybu.ru, studfiles.net, 79w.ru.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий