Топливный насос двигателя камаз

СБОРКА СЕКЦИИ ТНВД ДВИГАТЕЛЯ КамАЗ-740

Трудоемкость — 21,0 чел. мин.
55. Установить в корпус 14 (рис. 5) секции ТНВД поворотную втулку 10 плунжера, установить уплотнительные кольца 12 на корпус 14 плунжерной пары, собрать плунжерную пару и установить ее в корпус 14 секции, установить пружину 20, тарелку 21 пружины толкателя. При установке плунжерной пары совместить продольный паз втулки плунжера с фиксатором корпуса секции, плунжер устанавливается меткой на хвостовике в сторону отсечного отверстия втулки. (Верстак слесарный).

56. Установить в корпус 14 секции втулку 16 нагнетательного клапана, кольцо уплотнительное 2, седло клапана 3, клапан 4, регулировочные шайбы 6, упор пружины 8, завернуть штуцер 9 ТНВД. (Ключ гаечный 19 мм).

СБОРКА ТОПЛИВНОГО НАСОСА ДВИГАТЕЛЯ КамАЗ-740

Трудоемкость — 86,0 чел. мин.

57. Завернуть шпильки 12 (рис. 4) крепления секций ТНВД в корпус ТНВД. (Шпильковерт).

58. Установить в корпус 28 (рис. 1) клапана шарик 37, направляющую клапана 29, две шайбы регулировочные 36, прокладку 31, ввернуть пробку 32 клапана перепускного. Регулировку клапана производить при испытании ТНВД. (Ключ гаечный 14 мм).

59. Установить ввертыш с прокладкой в корпус ТНВД, ввернуть перепускной клапан в сборе в ввертыш. (Ключи гаечные 17 мм).

60. Установить на кулачковый вал 21 (рис. 4) шайбы 22, запрессовать внутренние кольца 23 конических подшипников на кулачковый вал, установить вал в корпус 4. (Приспособление для установки подшипников кулачкового вала (рис. 8)).

61. Запрессовать в переднюю крышку 14 подшипника сальник 15, запрессовать в в крышки 2 и 14 корпуса ТНВД наружные кольца 3 подшипников кулачкового вала. (Молоток медный, оправка Д=30 мм, L = 100 мм).

62. Установить на переднюю крышку 14 уплотнительное кольцо 13, регулировочные прокладки 17, 18, 19, установить переднюю 14 и заднюю 2 крышки подшипников в корпус ТНВД и завернуть винты 1 и 16. Свободный ход кулачкового вала 21 должен быть не более 0,1 мм. Свободный ход регулируется подбором толщины регулировочных прокладок 17—19 под передней крышкой 14. (Отвертка с крестообразным шлицем, микрометр, штатив, индикатор).

63. Установить ролик 65 (рис. 1) на втулку 66, вставить в толкатель 63 плунжера, запрессовать ось 68 ролика в толкатель плунжера, запрессовать штифты 69, установить сухарь 67, вставить пяту 64 толкателя. (Молоток).

64. Установить толкатель 63 в сборе, штифт 44 установочный в секцию ТНВД, установить секции в корпус 9 ТНВД, стопорные шайбы 73, плоские шайбы 75 и завернуть гайки 72 с пружинными шайбами 74 крепления секций. (Головка Сменная 17 мм, вороток).

65. Установить шайбу 25 (рис. 2) на ось 26 рычага стартовой пружины. Установить рЫчаг 18 (рис. 1) реек в сборе с рычагом 24 (рис. 2) стартовой пружины, установить пружину 28 и зашплинтовать рычаг реек. (Пассатижи).

66. Установить рейки 5 и 77 (рис. 1) и зафиксировать их. (Отвертка 6,5 мм).

67. Установить четыре втулки 24 реек, завернуть стопорные винты 11 крепления втулки рейки с задней стороны в корпусе.(Отвертка 6,5 мм).

68. Установить кольца уплотнительные 25 на пробки 24 реек и завернуть пробки 26. (Ключ гаечный 32 мм).

69. Установить на задний конец кулачкового вала упорную втулку 47 (рис. 2), установить ведущую шестерню 48, в шестерню установить две вставки 49, четыре сухаря 50, запрессовать шпонку 51, установить фланец 52 ведущей шестерни, запрессовать эксцентрик 53 привода насоса топливоподкачивающего, установить стопорную шайбу 54, завернуть гайку 55 и застопори+ь ее подогнув на грани гайки усики стопорной шайбы. (Молоток, оправка Де„ = 18 мм Днар=30 мм L=100 мм, зубило).

70. Установить в промежуточную шестерню 43 стопорное кольцо 42, запрессовать подшипник 41, установить распорную шайбу 44, запрессовать подшипник 41, установить промежуточную шестерню 43 на ось 40 промежуточной шестерни, установить шайбу 45, завернуть гайку 46 и зашплинтовать ее шплинтом 39. (Пассатижи специальные, бородок, молоток, ключ гаечный 13 мм, пассатижи).

71. Установить на грузы ролики, запрессовать ось 37 (рис. 3) ролика, втулки 5 грузов, установить грузы 6 на державку грузов 3, запрессовать оси 4 грузов, установить на державку кольцо 38 (рис. 2) стопорное, установить прокладки 13, запрессовать подшипники 12, вставить державку грузов в сборе в корпус ТНВД и установить стопорное кольцо в канавку. (Молоток, оправка Двн = 31 мм Диар=40 мм L=100 мм, оправка Дви = 18 мм Днар=30 мм L = 100 мм, пассатижи специальные).

72. Завернуть на болт 36 регулировочный подачи топлива две ограничивающие гайки 37, завернуть болт 36 в развале ТНВД, завернуть гайку. Длина болта регулировки подачи топлива внутри развала должна быть 55±0,2 мм. Измерять от головки болта до наружной плоскости корпуса по оси болта. Зазор между корпусом насоса и ограничивающей гайкой должен быть 0,8—1 мм. Болт и ограничитель тщательно застопорить. Размер определяющий расстояние между точкой приложения главной пружины и образующей оси рычагов, должен быть 52+0,5 мм. (Ключ гаечный 10 мм, штангенциркуль ШЦ-1).

73. Установить корректор 27 (рис. 3) подачи топлива в рычаг 36 регулятора, пружину 29 корректора, завернуть корпус 30 корректора, завернуть гайку 31 корпуса, установить шайбу 33, завернуть гайку 32 корректора подачи топлива и зашплинтовать шплинтом 28. (Ключ гаечный 22 мм, 10 мм, пассатижи).

74. Установить на пяту упорную 10 рычаг 12 регулятора подачи топлива, запрессовать втулку 18 рычагов, палец 14. (Молоток, оправка Д=6,5 мм L=20 мм Д=8 мм L=60 мм).

75. Установить на муфту 9 грузов подшипник 8 муфты грузов, стопорное кольцо 7, втулку муфты грузов, установить муфту грузов в развал корпуса ТНВД. (Отвертка 4 мм).

76. Установить в развал корпуса ТНВД втулку дистанционную, шайбу оси рычагов, рычаг 16 муфты грузов, пружину 27 (рис. 2) регулятора, рычаг 23 пружины регулятора. (Отвертка 4,0 мм).

77. Установить ось 26 рычагов регулятора.

78. Установить трубку 1 (рис. 3) подвода смазки в державку грузов, установить прокладку 11 (рис. 2) задней крышки 2 регулятора, установить крышку 2 в сборе, завернуть винты 1 и 5 спружинны-ми 6 и плоскими 7 шайбами крепления задней крышки регулятора. (Отвертка 6,5 мм).

79. Установить в корпус ТНВД два установочных штифта 29, прокладку 19 крышки регулятора с рычагами, крышку 18 в сборе, завернуть болты 15 с пружинными шайбами 16 и 17 крепления крышки регулятора. Шплинтовать после испытания. (Вороток, головка сменная 10 мм).

80. Установить топливоподкачивающий насос и завернуть гайки с пружинными шайбами. (Ключ гаечный 13 мм).

81. Установить защитные кожухи 15 (рис. 1) секций ТНВД, завернуть винты 13 и 16. (Отвертка 8,0 мм).

83. Снять ТНВД с приспособления для испытания и регулировок.

ТЕХНОЛОГИЧЕСКАЯ КАРТА № 2.2.
ДЕФЕКТОВКА ДЕТАЛЕЙ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ТНВД) ДВИГАТЕЛЯ КамАЗ-740

Общая трудоемкость — 34,0 чел. мин.

Исполнитель — слесарь по ремонту топливной аппаратуры 4-го разряда

НАЗНАЧЕНИЕ, УСТРОЙСТВО, ПРИНЦИП ДЕЙСТВИЯ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОН ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ТНВД) АВТОМОБИЛЯ КАМАЗ — 5320

Назначение, устройство, принцип действия ТНВД КамАЗ — 5320

Топливный насос высокого давления предназначен для подачи в цилиндры двигателя в определенные моменты времени строго дозированных порций топлива под высоким давлением.

ТНВД автомобиля КамАЗ — двухрядный, V — образный, в корпусе установлено восемь секций по четыре секции в каждом ряду.

Насосная секция включает в себя плунжерную пару, толкатель, кулачок вала топливного насоса и нагнетательный клапан. Основа секции — плунжерная пара. Она состоит из втулки и перемещающегося внутри нее плунжера.

Втулка плунжера изготовлена из легированной стали. Во время работы в плунжерной паре создается высокое давление топлива. Плунжер с большой точностью притирается к гильзе, зазор между ними в десятки раз тоньше человеческого волоса (0,001…0,002 мм). Втулка выполнена с утолщением в верхней части, в котором имеется два противоположных боковых отверстия. Верхнее впускное отверстие служит для заполнения надплунжерного пространства топливом, а нижнее перепускное отверстие для перепуска топлива. Оба отверстия втулки соединены с П — образным каналом топливного насоса. В верхней части плунжера находится соединенные осевой и боковой каналы, а также отсеченный паз, который выполнен по винтовой линии.

С его помощью можно менять порции подаваемого топлива без изменения общего хода плунжера. Кольцевая выточка в средней части плунжера служит для равномерного распределения по гильзе дизельного топлива, выполняющего в данном случае роль смазки [ 11 ].

В нижней части плунжера имеются выступ и выточка. Выступ входит в пазы поворотной втулки на которой помещен зубчатый венец соединенный с рейкой насоса. Зубчатый венец крепят к втулке винтом. Нижнюю выточку используют для закрепления в нем тарелки пружины, которая необходима для перемещения плунжера вниз. Плунжер перемещается вверх под действием толкателя, который получает движение от кулачка валика топливного насоса.

Чтобы обеспечить четкое начало и окончание подачи топлива в цилиндр, на гильзу устанавливают нагнетательный клапан, состоящий из седла и точно подогнанного к нему стержня клапана. Под усилием пружины клапан плотно закрывает выход к форсунке.

Корпус насоса изготовлен из сплава алюминия АЛ9 и представляет собой монолитную конструкцию с несъемной головкой. В верхней части корпуса имеются вертикальные расточки для установки секций топливного насоса. В нижней половине корпуса насоса размещен кулачковый вал вращающийся в конических роликовых подшипниках, установленных в прикрепленных к корпусу насоса крышках. Осевой зазор в конических подшипниках устанавливают подбором регулировочных прокладок.

Масло для смазывания деталей топливного насоса подается под давлением из общей смазочной системы двигателя.

Работа насоса происходит следующим образом: при вращении кулачкового вала, кулачок через роликовый толкатель, поднимает плунжер вверх и происходит ход нагнетания. Когда воздействие кулачка прекратится, плунжер и толкатель под действием пружины придут в нижнее положение, при котором оба всасывающих отверстия во втулке будут открыты и через них топливо из топливной камеры заполнит пространство над плунжером. При движении плунжера вверх, топливо из втулки вытесняется обратно в камеру до тех пор, пока плунжер не перекроет всасывающее отверстие.

Рисунок 5 — Топливный насос высокого давления.

1: корпус — 1; 2 — ролик толкателя; 3 — ось ролика; 4 — втулка ролика; 5 — пята толкателя; 6 — сухарь; 7 — тарелка пружины толкателя; 8 — пружина толкателя; 9, 34, 43, 45, и 51 — шайбы; 10 — поворотная втулка; 11 — плунжер; 12, 13, 46 — уплотнительные кольца; 14 — установочный штифт; 15 — рейка; 16 — втулка плунжера; 17 — корпус секции; 18 — прокладка нагнетательного клапана; 19 — нагнетательный клапан; 20 — штуцер; 21 — фланец корпуса секции; 22 — топливоподкачивающий ручной насос; 23 — пробка пружины; 24 и 48 — прокладки; 25 — корпус насоса низкого давления; 26 — топливоподкачивающий насос низкого давления; 27 — втулка штока; 23 — пружина толкателя; 29 — толкатель; 30 — стопорный винт; 31 — ось ролика; 32 — ролик толкателя; 33 и 52 — гайки; 35 — эксцентрик привода насоса низкого давления; 36 и 50 — шпонки; 37 — фланец шестерни регулятора; 38 — сухарь шестерни регулятора; 39 — шестерня регулятора; 40 — упорная втулка; 41 и 49 крышки подшипников; 42 — роликовый подшипник; 44 — кулачковый вал; 47 — манжета с пружиной; 53 — муфта опережения впрыскивания топлива; 54 — пробка рейки; 16 — перепускной клапан; 57 — втулка рейки; 58 — ось рычага реек; 59 — регулировочная прокладка.

После этого начнется нагнетание топлива через нагнетательный клапан и трубопровод высокого давления в форсунку. Конец нагнетания наступит в момент, когда винтовая кромка плунжера дойдет до правого всасывающего отверстия. При этом вертикальный паз сообщит пространство над плунжером с топливной камерой, давление над плунжером упадет и при дальнейшем ходе плунжера нагнетания уже не будет [ 10 ].Регулятор частоты вращения — всережимный, прямого действия, изменяет количество топлива, подаваемого в цилиндр, в зависимости от нагрузки, поддерживая заданную частоту.

Регулятор размещен в развале корпуса ТНВД. На кулачковом валу насоса установлена ведущая шестерня регулятора, вращение на которую передается через резиновые сухари. Ведомая шестерня выполнена как одно целое с державкой грузов, вращающейся на двух шарикоподшипниках.

Рисунок 6 — Регулятор частоты вращения: 1 — задняя крышка; 2 — гайка; 3 — шайба; 4 — подшипник; 5 — регулировочная прокладка; 6 — промежуточная шестерня; 7 — прокладка задней крышки регулятора; 8 — стопорное кольцо; 9 — державка грузов; 10 — ось груза; 11 — упорный подшипник; 12 — муфта; 13 — груз; 14 — палец; 15 — корректор; 16 — возвратная пружина рычага останова; 17 — болт; 18 — втулка; 19 — кольцо; 20 — рычаг пружины регулятора; 21 — ведущая шестерня; 22 — сухарь ведущей шестерни; 23 — фланец ведущей шестерни; 24 — ограничивающая гайка; 25 — регулировочный болт подачи топлива; 26 — рычаг стартовой пружины; 27 — пружина регулятора; 28 — рейка; 29 — стартовая пружина; 30 — штифт; 31 — рычаг реек; 32 — рычаг регулятора; 33 — рычаг муфты грузов; 34 — ось рычагов регулятора; 35 — болт крепления верхней крышки.

При уменьшении частоты вращения коленчатого вала центробежная сила грузов уменьшается, рычаг регулятора с рейкой топливного насоса под действием усилия пружины перемещается в обратном направлении, и подача топлива, и частота вращения коленчатого вала увеличиваются.

Подача топлива выключается поворотом рычага останова до упора в болт. При этом рычаг, преодолев усилие пружины, через штифт повернет рычаги, рейка переместится до полного выключения подачи топлива.

Рисунок 7 — Крышка регулятора частоты вращения

1 — рычаг управления подачей топлива (регулятором); 2 — болт ограничения минимальной частоты вращения; 3 — рычаг останова; 4 — пробка заливного отверстия; 5 — болт регулировки пусковой подачи; 6 — болт ограничения хода рычага останова; 7 — болт ограничения максимальной частоты вращения.

При снятии усилия с рычага останова под действием пружины 16 рычаг возвратится в рабочее положение, а стартовая пружина 29 через рычаг 31 вернет рейку топливного насоса в положение, обеспечивающее максимальную подачу топлива, необходимую для пуска.

Топливоподкачивающим ручным насосом система заполняется топливом и из нее удаляется воздух. Насос поршневого типа закреплен на фланце топливного насоса низкого давления уплотнительной медной шайбой и состоит из корпуса, поршня, цилиндра, рукоятки в сборе со штоком, опорной тарелки и уплотнения [ 10 ].

Топливную систему прокачивают движением рукоятки со штоком и поршнем вверх-вниз. При движении рукоятки вверх в подпоршневом пространстве создается разрежение. Впускной клапан, сжимая пружину, открывается, и топливо поступает в полость А топливного насоса низкого давления. При движении рукоятки вниз нагнетательный клапан открывается и топливо под давлением поступает в нагнетательную магистраль.

После прокачки рукоятку наворачивают на верхний резьбовой хвостовик цилиндра. При этом поршень прижимается к резиновой прокладке и уплотняет всасывающую полость топливного насоса низкого давления.

Автоматическая муфта опережения впрыска топлива изменяет начало подачи топлива в зависимости от частоты вращения коленчатого вала двигателя. Применение муфты обеспечивает оптимальное для рабочего процесса начало подачи топлива по всему диапазону скоростных режимов, чем достигается необходимая экономичность и приемлемая жесткость процесса в различных скоростных режимах работы двигателя.

Рисунок 8 — Автоматическая муфта опережения впрыска топлива: 1 — ведущая полумуфта; 2, 4 — манжеты; 3 — втулка ведущей полумуфты; 5 — корпус; 6 — регулировочные прокладки; 7 — стакан пружины; 8 — пружина; 9, 15 — шайбы; 10 — кольцо; 11 — груз с пальцем; 12 — проставка с осью; 13 — ведомая полумуфта; 14 — уплотнительное кольцо; 16 — ось грузов.

При увеличении частоты вращения коленчатого вала грузы под действием центробежных сил расходятся, вследствие чего ведомая полумуфта поворачивается относительно ведущей полумуфты в направлении вращения кулачкового вала, что вызывает увеличение угла опережения впрыска топлива. При уменьшении частоты вращения коленчатого вала грузы под действием пружин сходятся, ведомая полумуфта поворачивается вместе с валом насоса в сторону, противоположную направлению вращения вала, что вызывает уменьшение угла опережения подачи топлива.

ВВЕДЕНИЕ

Технологическая карта представляет собой документ, который содержит все необходимые сведения и, соответственно, инструкции для персонала, который выполняют определенный технологический процесс или же техническое обслуживание объекта. Качественно составленная технологическая карта должна в обязательном порядке давать четкие ответы на такие вопросы: электростартерный автобус экономический труд

Какого рода операции следует выполнять?

В какой именно последовательности выполняются предусмотренные технологическим процессом операции?

Каков конечный результат выполнения определенной операции?

Какие требуются инструменты, а также материалы для эффективного выполнения операции?

Технологические карты, прежде всего, рассчитаны на обучение рабочих, ведь в этом документе, а также выстроена цепочка действий рабочего, который, со своей стороны, не имеет права пропускать какой-либо цикл.

В данной курсовой работе будет разработана технологическая карта проверки форсунок дизельного двигателя КАМАЗ-740 на стенде

НАЗНАЧЕНИЕ И УСТРОЙСТВО СИСТЕМЫ ПИТАНИЯ ДВИГАТЕЛЯ КАМАЗ-740

Система питания двигателя топливом предназначена для размещения запаса топлива на автомобиле, очистки, распыления топлива и равномерного распределения его по цилиндрам в соответствии с порядком работы двигателя.

В двигателе КамАЗ-740 применена система питания топливом раздельного типа (т. е. функции топливного насоса высокого давления и форсунки разделены). Она включает в себя (рис. 1) топливные баки, топливный фильтр грубой очистки, топливный фильтр тонкой очистки, топливоподкачивающий насос* низкого давления, насос ручной прокачки топлива, топливный насос высокого давления (ТНВД) с всережимным регулятором и автоматической муфтой опережения впрыска топлива, форсунки, топливопроводы высокого и низкого давления и контрольно-измерительные приборы.

Рисунок 1. Система питания двигателя топливом:

Топливные баки (рис. 2) предназначены для размещения и хранения на автомобиле определенного.запаса топлива. На автомобиле КамАЗ-4310 установлено два бака емкостью по 125 л каждый. Расположены они по обеим сторонам автомобиля на лонжеронах рамы. Бак состоит из двух половин, выштампован-ных из листовой стали и соединенных сваркой; для предохранения от коррозии освинцован изнутри.

Внутри бака имеются две перегородки, которые служат для смягчения гидравлических ударов топлива о стенки при движении автомобиля. Бак оборудован заливной горловиной с выдвижной трубой, фильтрующей сеткой и герметичной крышкой. В верхней части бака установлены датчик указателя уровня топлива реостатного типа, трубка, выполняющая роль воздушного клапана. В нижней части бака размещены заборная трубка и штуцер с краном для слива отстоя. На конце заборной трубки имеется сетчатый фильтр.

Рисунок 2. Топливный бак:

1 — дно; 2 — перегородка; 3 — корпус; 4 — пробка сливного крана; 5 — наливная труба; 6 — пробка наливной трубы; 7 —стяжная лента; 8 — кронштейн крепления бака

Фильтр грубой очистки топлива (рис. 3) предназначен для предварительной очистки топлива, поступающего в топливопод-качивающий насос. Установлен с левой стороны на раме автомобиля. Он состоит из корпуса, отражателя с фильтрующей сеткой, распределителя, успокоителя, стакана фильтра, подводящего и отводящего штуцеров с прокладками. Стакан с крышкой соединяется четырьмя болтами через резиновую уплотнительную прокладку. В нижнюю часть стакана ввертывается сливная пробка.

Топливо, поступающее через подводящий штуцер из топливного бака, подается к распределителю. Крупные посторонние частицы и вода собираются в нижней части стакана. Из верхней части топливо через сетчатый фильтр подводится к отводящему штуцеру, а из него — к топливопод-качивающему насосу.

Рисунок 3. Фильтр грубой очистки топлива:

Фильтр тонкой очистки топлива (рис. 4) предназначен для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Фильтр установлен в задней части двигателя в самой высокой точке системы питания. Такая установка обеспечивает сбор воздуха, попавшего в систему питания, и его удаление в топливный бак через клапан-жиклер. Фильтр состоит из корпуса, двух фильтрующих элементов, двух колпаков с приваренными стержнями, клапана-жиклера, подводящего и отводящего штуцеров с уплотнительными прокладками, элементов уплотнения. Корпус отлит из алюминиевого сплава. В нем выполнены каналы для подвода и отвода топлива, полость для установки клапана-жиклера и кольцевые проточки для установки колпаков.

Сменные картонные фильтрующие элементы изготовлены из высокопористого картона типа ЭТФЗ. Торцевое уплотнение элементов осуществляется верхними и нижними уплотнителями. Плотное прилегание элементов к корпусу фильтра обеспечивается пружинами, устанавливаемыми на стержни колпаков.

Клапан-жиклер предназначен для удаления воздуха, попавшего в систему питания. Он установлен в корпусе фильтра и состоит из колпака, пружины клапана, пробки, регулировочной шайбы, уплотнительной шайбы. Клапан-жиклер открывается, когда давление в полости перед клапаном равно 0,025… 0,045 МПа (0,25…0,45 кгс/см2), а при давлении 0,22±0,02 МПа (2,2±0,2 кгс/см2) начинает перепускаться топливо.

Рисунок 4. Фильтр тонкой очистки топлива:

Топливо под давлением от топливоподкачивающего насоса заполняет внутреннюю полость колпака и продавливается через фильтрующий элемент, на поверхности которого остаются механические примеси. Очищенное топливо с внутренней полости фильтрующего элемента подается к впускной полости ТНВД.

Топливоподкачивающий насос низкого давления предназначен для подачи топлива через фильтры грубой и тонкой очистки к впускной полости ТНВД. Насос поршневого типа с приводом от эксцентрика кулачкового вала ТНВД. Давление подачи 0,05…0,1 МПа (0,5…1 кгс/см2). Насос установлен на задней крышке ТНВД. Топливоподкачивающий насос (рис. 5, 6) состоит из корпуса, поршня, пружины поршня, толкателя поршня, штока толкателя, пружины толкателя, направляющей втулки штока, впускного клапана, нагнетательного клапана.

Корпус насоса чугунный. В нем выполнены каналы и полости для поршня и клапанов. Полости под поршнем и над поршнем соединены каналом через нагнетательный клапан.

Толкатель предназначен для передачи усилия от эксцентрика кулачкового вала поршню. Толкатель роликового типа.

Эксцентрик кулачкового вала ТНВД через толкатель и шток сообщает поршню насоса (см. рис. 5) возвратно-поступательное движение.

Рисунок 5. Схема работы топливоподкачивающего насоса низкого давления и ручного топливоподкачивающего насоса:

1 — эксцентрик привода насоса; 2 — толкатель; 3 — поршень; л — впускной клапан; 5 — ручной насос; 6 — нагнетательный 4 клапан

При опускании толкателя поршень под действием пружина движется вниз. Во всасывающей полости а создается разрежение, впускной клапан открывается и пропускает топливо в над-поршневую полость. Одновременно топливо из подпоршневой полости через фильтр тонкой очистки поступает во впускные каналы ТНВД. При движении поршня вверх впускной клапан закрывается и топливо из надпоршневой полости через нагнетательный клапан поступает в полость под поршнем. Когда давление в нагнетательной магистрали б повышается, поршень прекращает вслед за толкателем двигаться вниз, а остается в положении, которое определяется равновесием сил от давления топлива с одной стороны и усилия пружины с другой. Таким образом, поршень совершает не полный ход, а частичный. Тем самым производительность насоса будет определяться расходом топлива.

Ручной топливоподкачивающий насос (см. рис. 6) предназначен для заполнения системы топливом и удаления из нее воздуха. Насос поршневого типа, крепится на корпусе топливоподкачивающего насоса через уплотняющую медную шайбу.

Насос состоит из корпуса, поршня, цилиндра, штока поршня и рукоятки, опорной тарелки, впускного клапана (общего с топливоподкачивающим насосом).

Заполнение и прокачивание системы осуществляется движением рукоятки со штоком вверх-вниз. При движении рукоятки вверх в подпоршневом пространстве создается разрежение. Впускной клапан открывается и топливо поступает в полость над поршнем топливоподкачивающего насоса. При движении рукоятки вниз нагнетательный клапан топливоподкачивающего насоса открывается и топливо под давлением поступает в нагнетательную магистраль. Далее процесс повторяется.

После прокачки рукоятка должна быть плотно навернута на верхний резьбовой хвостовик цилиндра. При этом поршень ярижимается к резиновой прокладке, уплотняя впускную полость топливоподкачивающего насоса.

Рисунок 6. Топливоподкачивающий насос:

Топливный насос высокого давления (ТНВД) предназначен для подачи дозированных порций топлива под высоким давлением в цилиндры двигателя в соответствии с порядком их работы. Насос установлен в развале блока цилиндров и приводится в действие от шестерни распределительного вала через шестерню привода насоса. Направление вращения кулачкового вала со стороны привода — правое.

Насос состоит из корпуса, кулачкового вала (см. рис. 7), восьми насосных секций, всережимного регулятора частоты вращения, муфты опережения впрыска топлива и привода топливного насоса.

Корпус ТНВД предназначен для размещения насосных секций, кулачкового вала и регулятора частоты вращения. Отлит из алюминиевого сплава, в нем выполнены впускной и отсечной каналы и полости для установки и крепления насосных секций, кулачкового вала с подшипниками, шестерен привода регулятора, подводящих и отводящих топливных штуцеров. На заднем торце корпуса насоса крепится крышка регулятора, в которой расположен топливоподкачивающий насос низкого давления с насосом ручной подкачки топлива. Сверху крышки ввертывается штуцер с маслоподводящей трубкой для смазки деталей ТНВД под давлением. Масло из насоса сливается по трубке, соединяющей нижнее отверстие крышки регулятора с отверстием в развале блока. Верхняя полость корпуса ТНВД закрывается крышкой (см. рис. 8), на которой расположены рычаги управления регулятором частоты вращения и два защитных кожуха топливных секций насоса. Крышка устанавливается на двух штифтах и крепится болтами, а защитные кожухи — двумя винтами. На переднем торце корпуса насоса на выходе из отсечного канала ввернут штуцер с перепускным клапаном шарикового типа, поддерживающим избыточное давление топлива в насосе 0,06…0,08 МПа (0,6…0,8 кгс/см2). В нижней части корпуса насоса выполнена полость для установки кулачкового вала.

Кулачковый вал предназначен для сообщения движения плунжерам насосных секций и обеспечения своевременной подачи топлива в цилиндры двигателя. Кулачковый вал изготавливается из стали. Рабочие поверхности кулачков и опорных шеек цементируются на глубину 0,7…1,2 мм. Благодаря К-об-разной конструкции насоса кулачковый вал имеет меньшую длину и, следовательно, обладает более высокой жесткостью. Вал вращается в двух конических подшипниках, внутренние обоймы которых напрессованы на шейки вала. Осевой зазор кулачкового вала 0,1 мм регулируется прокладками, устанавливаемыми под крышку подшипника. Для уплотнения кулачкового вала в крышке имеется резиновая манжета. На переднем конусном конце кулачкового вала на сегментной шпонке устанавливается автоматическая муфта угла опережения впрыска топлива. На заднем конце кулачкового вала монтируется упорная втулка, ведущая шестерня регулятора в сборе, а на призматической шпонке — фланец ведущей шестерни регулятора. Фланец выполнен вместе с эксцентриком привода топливопод-качивающего насоса. Крутящий момент от кулачкового вала на ведущую шестерню регулятора передается через фланец посредством резиновых сухарей. При вращении кулачкового вала усилие передается на роликовые толкатели и через пяты толкателей на плунжеры насосных секций. Каждый толкатель от поворота фиксируется сухарем, выступ которого входит в паз корпуса насоса. За счет изменения толщины пяты регулируется начало подачи топлива. При установке пяты большей толщины топливо начинает подаваться раньше.

Рисунок 8. Крышка регулятора:

1 — болт регулирования пусковой подачи; 2 — рычаг останова; 3 — бол* регулирования хода рычага останова; 4 — болт ограничения максимальной частоты вращения; 5 — рычаг управления регулятором (рейкой топливного насоса); 6 — болт ограничения минимальной частоты вращения; I — работа; It — выключено

Насосная секция (рис. 9,а) — часть топливного насоса высокого давления, осуществляющая дозирование и подачу топлива к форсунке. Каждая насосная секция состоит из корпуРЗ, плунжерной пары, поворотной втулки, пружины плунжера, нагнетательного клапана, толкателя.

Корпус секции имеет фланец, при помощи которого секция крепится на шпильках, ввернутых в корпус насоса. Отверстия во фланце под шпильки имеют овальную форму. Это позволяет поворачивать насосную секцию для регулирования равномерности подачи топлива отдельными секциями. При повороте секции против часовой стрелки цикловая подача увеличивается, по часовой — уменьшается. В корпусе секции выполнены два отверстия для прохода топлива из каналов в насосе к отверстиям в плунжерной втулке (А, Б), отверстие для установки штифта, фиксирующего положение втулки и плунжера относительно корпуса секции, и прорезь для размещения поводка поворотной втулки.

Плунжерная пара (рис. 9, б) — узел насосной секции, непосредственно предназначенный для дозирования и подачи топлива. Плунжерная пара включает втулку плунжера и плунжер. Они представляют собой прецизионную пару. Изготавливаются из хромомолибденовой стали, подвергаются закалке с последующей обработкой глубоким холодом для стабилизации свойств материала. Рабочие поверхности втулки и плунжера азотируют.

Рисунок 9. Секция топливного насоса высокого давления:

Плунжер является подвижной деталью плунжерной пары и выполняет роль поршня. Плунжер в верхней части имеет осевое сверление, две спиральные канавки, выполненные с двух сторон плунжера, и радиальное сверление, соединяющее осевое сверление и канавки. Спиральная канавка предназначена для изменения цикловой подачи топлива за счет поворота плунжера, а следовательно, и канавки относительно отсечного отверстия втулки плунжера. Поворот плунжера относительно втулки осуществляется рейкой топливного насоса через шипы плунжера. На наружной поверхности одного шипа имеется метка. При сборке секции метка на шипе плунжера и прорезь в корпусе секции для установки поводка поворотной втулки должны находиться с одной стороны. Наличие второй канавки обеспечивает гидравлическую разгрузку плунжера от боковых усилий. За счет этого повышается надежность работы насосной секции.

Уплотнение между втулкой и корпусом секции обеспечивается кольцом из маслобензостойкой резины, установленным в кольцевую канавку втулки.

Нагнетательный клапан и его седло выполняются из стали, закаливаются и обрабатываются глубоким холодом. Клапан и седло составляют прецизионную пару, в которой замена одной детали на одноименную из другого комплекта не допускается.

Нагнетательный клапан расположен на верхнем конце втулки и прижат к седлу пружиной. Седло нагнетательного клапана прижато к втулке плунжера торцевой поверхностью штуцера через уплотнительную текстолитовую прокладку.

Нагнетательный клапан грибкового типа с цилиндрической направляющей частью. Радиальное отверстие диаметром 0,3 мм служит для корректировки цикловой подачи при частоте вращения кулачкового вала 600…1000 мин-1. Корректировка осуществляется за счет возрастания дросселирующего действия клапана в период отсечки подачи, в результате чего снижается количество топлива, перетекающего из топливопровода высокого давления в надплунжерное пространство. Разгрузка топливопровода от высокого давления осуществляется за счет перемещения при посадке направляющей клапана в канале седла. Верхняя часть направляющей выполняет роль поршенька, отсасывающего топливо из топливопровода.

Всережимный регулятор частоты вращения. Двигатели внутреннего сгорания должны работать на заданном установившемся (равновесном) режиме, характеризуемом постоянством частоты вращения коленчатого вала, температуры охлаждающей жидкости и других параметров. Такой режим работы может поддерживаться только при условии равенства крутящего момента двигателя моменту сопротивления движению. Однако в процессе эксплуатации это равенство часто нарушается вследствие изменения нагрузки или задаваемого режима, поэтому значение параметров (частоты вращения и др.) отклоняется от заданных. Для восстановления нарушенного режима работы двигателя применяется регулирование. Регулирование может осуществляться вручную путем воздействия на орган управления (рейку топливного насоса) или при помощи специального прибора, называемого автоматическим регулятором частоты вращения. Таким образом, регулятор частоты вращения предназначен для поддержания заданной водителем частоты вращения коленчатого вала путем автоматического изменения цикловой подачи топлива в зависимости от нагрузки.

На двигателе КамАЗ установлен всережимный центробежный регулятор частоты вращения прямого действия. Он размещен в развале корпуса ТНВД, а управление выведено на крышку насоса.

Регулятор имеет следующие элементы (рис.10 )

  • — задающее устройство;
  • — чувствительный элемент;
  • — сравнивающее устройство;
  • — исполнительный механизм;
  • — привод регулятора.

В задающее устройство входят рычаг управления регулятором, рычаг пружины, пружина регулятора, рычаг регулятора, рычаг с корректором, регулировочные болты ограничения частоты вращения.

К чувствительному элементу относятся вал регулятора с державкой грузов, грузы с роликами, упорный подшипник, муфта регулятора с пятой.

К сравнивающему устройству относится рычаг муфты грузов, с помощью которого передается движение муфты регулятора исполнительному механизму (рейкам).

К исполнительному механизму относятся рейки топливного насоса, рычаг реек (дифференциальный рычаг).

В привод регулятора входят ведущая шестерня регулятора, промежуточная шестерня 6, шестерня регулятора, выполненная за одно целое с валом всережимного регулятора.

Для остановки двигателя имеется устройство, в которое входят рычаг остановки, пружина рычага остановки, стартовая пружина, ограничительный болт регулировки хода рычага остановки, болт регулировки пусковой подачи.

Управление подачей топлива осуществляется с помощью ножного и ручного приводов.

Вращение ведущей шестерне регулятора передается через-резиновые сухари. Сухари, являясь упругими элементами, гасят колебания, связанные с неравномерностью вращения вала. Уменьшение высокочастотных колебаний приводит к снижению износа сочленений основных деталей регулятора. От ведущей шестерни вращение к ведомой шестерне передается через промежуточную шестерню.

Ведомая шестерня выполнена заодно с державкой грузов, вращающейся на двух шарикоподшипниках. При вращении державки грузы под действием центробежных сил расходятся и через упорный подшипник перемещают муфту, муфта, упираясь в палец, в свою очередь, перемещает рычаг муфты грузов.

Рычаг муфты грузов одним концом крепится на оси рычагов регулятора, другим через штифт соединен с рейкой топливного насоса. На оси также крепится рычаг регулятора, другой конец которого перемещается до упора в регулировочный болт подачи топлива. Рычаг муфты грузов воздействует на рычаг регулятора через корректор. Рычаг управления регулятором жестко связан с рычагом пружины регулятора.

Рисунок 10. Регулятор частоты вращения:

Стартовая пружина присоединена к рычагу стартовой пружины и рычагу реек. Рейки, в свою очередь, связаны с поворотными втулками насосных секций. Снижение степени неравномерности регулятора на малых частотах вращения коленчатого вала достигается за счет изменения плеча приложения усилия пружины регулятора к рычагу регулятора.

Повышение чувствительности регулятора обеспечивается качественной обработкой трущихся поверхностей подвижных деталей регулятора и насоса, надежной смазкой их и увеличением угловой скорости вращения муфты грузов в два раза па отношению к кулачковому валу насоса за счет передаточного числа приводных шестерен регулятора.

На двигателе установлен регулятор частоты вращения с корректором дымности, который встроен в рычаг муфты грузов. Корректор, уменьшая подачу топлива, позволяет снизить дымление двигателя на малой частоте вращения коленчатого вала (1000…1400 мин).

Заданный скоростной режим работы двигателя устанавливается рычагом управления регулятором, который поворачивается и через рычаг пружины увеличивает ее натяжение. Под воздействием этой пружины рычаг через корректор воздействует на рычаг муфты, который перемещает рейки, связанные с поворотными втулками плунжеров, в сторону увеличения подачи топлива. Частота вращения коленчатого вала увеличивается.

Центробежная сила вращающихся грузов через упорный подшипник, муфту и рычаг муфты грузов передается на рейку топливного насоса, которая через дифференциальный рычаг соединена с другой рейкой. Перемещение реек центробежной силой грузов вызывает уменьшение подачи топлива.

Регулируемый скоростной режим зависит от соотношения силы пружины регулятора и центробежной силы грузов при установленной частоте вращения коленчатого вала. Чем больше натянута пружина регулятора, тем при более высоком скоростном режиме его грузы могут изменить положение рычага регулятора в сторону ограничения подачи топлива в цилиндры двигателя. Устойчивый режим работы двигателя будет в том случае, если центробежная сила грузов будет равна силе пружины регулятора. Каждому положению рычага управления регулятором соответствует определенная частота вращения коленчатого вала.

При заданном положении рычага управления регулятором в случае уменьшения нагрузки на двигатель (движение на спуск) частота вращения коленчатого вала, а следовательно, и вала привода регулятора повышается. В этом случае центробежная сила грузов возрастает и они расходятся.

Грузы воздействуют на упорный подшипник и, преодолевая усилие пружины, заданное водителем, поворачивают рычаг регулятора и перемещают рейки в сторону уменьшения подачи по тех пор, пока не установится подача топлива, соответствующая условиям движения. Заданный скоростной режим работы двигателя восстановится.

С увеличением нагрузки (движение на подъем) частота вращения, а следовательно, и центробежные силы грузов уменьшаются. Усилие пружины через рычаги 31, 32, воздействуя на муфту, перемещает ее и сближает грузы. При этом рейки перемещаются в сторону увеличения подачи топлива до тех пор, пока частота вращения коленчатого вала не достигнет величины, заданной условиями движения.

Таким образом, всережимный регулятор поддерживает любой заданный водителем режим движения.

При работе двигателя на номинальной частоте вращения и полной подаче топлива Г-образный рычаг 31 упирается в регулировочный болт 24. В случае увеличения нагрузки частота вращения коленчатого вала и вала регулятора начинает снижаться. При этом нарушается равновесие между силой пружины регулятора и центробежной силой его грузов, приведенной к оси рычага регулятора. И за счет избыточной силы пружины корректора плунжер корректора перемещает рычаг муфты в сторону увеличения подачи топлива.

Таким образом, регулятор частоты вращения не только поддерживает работу двигателя на заданном режиме, но и обеспечивает подачу в цилиндры дополнительных порций топлива при работе с перегрузкой.

Выключение подачи топлива (останов двигателя) осуществляется поворотом рычага останова до упора в болт регулировки хода рычага останова. Рычаг, преодолевая усилие пружины (установленной на рычаге), повернет за палец рычаг регулятора. Рейки перемещаются до полного выключения подачи топлива. Двигатель останавливается. После остановки рычаг останова под действием возвратной пружины возвращается в положение РАБОТА, а стартовая пружина через рычаг реек вернет рейки топливного насоса в сторону пусковой подачи топлива (195…210 мм3/цикл).

Автоматическая муфта опережения впрыска топлива. В дизелях топливо впрыскивается в воздушный заряд. Топливо не может мгновенно воспламениться, а должно пройти подготовительную фазу, во время которой осуществляется перемешивание топлива с воздухом и его испарение. При достижении температуры самовоспламенения смесь воспламеняется и быстро начинает гореть. Этот период сопровождается резким нарастанием давления и повышением температуры. Для того чтобы получить наибольшую мощность, необходимо, чтобы сгорание топлива произошло в минимальном объеме, т. е. когда поршень находится в ВМТ. С этой целью топливо всегда впрыскивается еще до прихода поршня в ВМТ.

Угол, определяющий положение коленчатого вала относительно ВМТ в момент начала впрыска топлива, называется углом опережения впрыска топлива. Конструкция привода топливного насоса дизеля КамАЗ обеспечивает впрыск топлива за 18° до прихода поршня в ВМТ при такте сжатия.

С увеличением частоты вращения коленчатого вала двигателя время на подготовительный процесс уменьшается и воспламенение может начаться после ВМТ, что приведет к снижению полезной работы. Для того чтобы получить наибольшую работу с увеличением частоты вращения коленчатого вала, топливо необходимо впрыскивать раньше, т. е. увеличивать угол опережения впрыска топлива. Это можно сделать за счет поворота кулачкового вала в сторону его вращения относительно привода. Для этой цели между кулачковым валом ТНВД и его приводом устанавливается муфта опережения впрыска топлива. Применение муфты значительно улучшает пусковые качества дизеля и его экономичность на различных скоростных режимах.

Таким образом, муфта опережения впрыска топлива предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

На КамАЗ-740 применена автоматическая муфта центробежного типа прямого действия. Диапазон регулирования угла опережения впрыска топлива 18…28°.

Муфта установлена на коническом конце кулачкового вала ТНВД на сегментной шпонке и крепится кольцевой гайкой с пружинной шайбой. Она изменяет момент впрыска топлива за счет дополнительного поворота кулачкового вала насоса во время работы двигателя относительно вала привода насоса высокого давления (рис. 11).

Автоматическая муфта (рис. 11, а) состоит из корпуса, ведущей полумуфты с пальцами, ведомой полумуфты с осями грузов, грузов с пальцами, проставок, стаканов пружин, пружин, регулировочных прокладок и упорных шайб.

Корпус муфты чугунный. На переднем торце выполнено два резьбовых отверстия для заполнения муфты моторным маслом. Корпус наворачивается на ведомую полумуфту и стопорится. Уплотнение между корпусом и ведущей полумуфтой и ступицей ведомой полумуфты осуществляется двумя резиновыми манжетами, а между корпусом и ведомой полумуфтой — кольцом из маслобензостойкой резины.

Ведущая полумуфта установлена на ступице ведомой и может поворачиваться относительно нее. Привод муфты осуществляется от приводного вала ТНВД (рис. 11, б). В ведущей полумуфте выполнено два пальца, на которых установлены проставки. Проставка упирается одним концом в палец груза, а другим скользит по профильному выступу грузов.

Ведомая полумуфта установлена на конусной части кулачкового вала ТНВД. В полумуфту запрессованы две оси грузов и нанесена метка для установки угла опережения впрыска топлива. Грузы качаются на осях в плоскости, перпендикулярной оси вращения муфты. В грузах имеются профильные выступы и пальцы. На грузы действуют усилия пружин.

Рисунок 11. Автоматическая муфта опережения впрыска топлива:

При минимальной частоте вращения коленчатого вала центробежная сила грузов невелика и они удерживаются усилием пружин. В этом случае расстояние между осями грузов (на ведомой полумуфте) и пальцами ведущей полумуфты будет максимальным. Ведомая часть муфты отстает от ведущей на максимальный угол. Следовательно, угол опережения впрыска топлива будет минимальный. С увеличением частоты вращения коленчатого вала грузы под действием центробежных сил, преодолевая сопротивление пружин, расходятся. Проставки скользят по профильным выступам грузов и поворачиваются вокруг осей пальцев грузов. Так как в отверстие проставок входят пальцы ведущей полумуфты, то расхождение грузов приводит к тому, что расстояние между пальцами ведущей полумуфты и осями грузов будет уменьшаться, т. е. будет уменьшаться и угол отставания ведомой полумуфты от ведущей. Ведомая полумуфта поворачивается относительно ведущей на некоторый угол по ходу вращения муфты (направление вращения правое). Поворот ведомой полумуфты вызывает проворачивание кулачкового вала ТНВД, что приводит к более раннему впрыску топлива относительно ВМТ.

При уменьшении частоты вращения коленчатого вала двигателя центробежная сила грузов уменьшается и они под действием пружины начинают сходиться. Ведомая полумуфта поворачивается относительно ведущей в сторону, противоположную вращению, уменьшая угол опережения впрыска топлива.

Форсунка предназначена для впрыска топлива в цилиндры “двигателя, распыления и распределения его по объему камеры сгорания. На двигателе КамАЗ-740 устанавливаются форсунки закрытого типа с многодырочным распылителем и гидравлически управляемой иглой. Давление начала подъема иглы 20… 22,7 МПа (200…227 кгс/см2). Форсунка устанавливается в гнездо головки цилиндра и крепится скобой. Уплотнение форсунки в гнезде головки цилиндра осуществляется в верхнем поясе резиновым кольцом 7 (рис. 12), в нижнем — конусом гайки распылителя и медной шайбой. Форсунка состоит из корпуса 6, гайки распылителя 2, распылителя, проставки 3, штанги 5, пружины, опорной и регулировочных шайб и штуцера форсунки с фильтром.

Корпус форсунки изготовлен из стали. В верхней части корпуса выполнены резьбовые отверстия для установки штуцера с фильтром и штуцера дренажного трубопровода (см. рис. 1). В корпусе выполнены топливоподводящий канал и канал для отвода топлива, просачивающегося во внутреннюю полость корпуса.

Рисунок 12. Форсунка:

Гайка распылителя предназначена для соединения распылителя с корпусом форсунки.

Распылитель — узел форсунки, осуществляющий распыление и формирование струй впрыскиваемого топлива.

Корпус распылителя и игла составляют прецизионную пару, в которой замена одной какой-либо детали не допускается. Корпус изготовлен из хромоникелеванадиевой стали и подвергнут специальной термообработке (цементация, закалка с последующей обработкой глубоким холодом) для получения высокой твердости и износостойкости рабочих поверхностей. В корпусе распылителя выполнены кольцевая канавка и канал для подвода топлива в полость корпуса распылителя, а также два отверстия для штифтов, обеспечивающих фиксацию корпуса распылителя относительно корпуса форсунки. В нижней части корпуса выполнены четыре сопловых отверстия. Их диаметр 0,3 мм. Для обеспечения равномерного распределения топлива по объему камеры сгорания сопловые отверстия выполнены под разными углами. Это вызвано тем, что форсунка относительно оси цилиндра расположена под углом 21°.

Игла распылителя предназначена для запирания распыляющих отверстий после впрыска топлива. Игла выполнена из инструментальной стали и также подвергнута специальной обработке. С целью повышения срока службы распылителя и иглы запорная часть иглы выполнена двухконусной.

Проставка предназначена для фиксации корпуса распылителя относительно корпуса форсунки.

Штанга — подвижная деталь форсунки, предназначена для передачи усилия от пружины форсунки к игле распылителя.

Пружина форсунки предназначена для обеспечения необходимого давления подъема иглы. Натяжение пружины осуществляется регулировочными шайбами, которые устанавливаются между опорной шайбой и торцем внутренней полости корпуса форсунки. Изменение толщины шайб на 0,05 мм приводит к изменению давления начала подъема иглы на 0,3…0,35 МПа (3…3,5 кгс/см2). В форсунках второго типа (рис. 12,6) регулировка пружины производится поворотом эксцентрика 17.

Совместная работа насосной секции ТНВД и форсунки. Водитель, воздействуя на педаль подачи топлива через систему тяг и рычагов, задающее устройство всережимного регулятора, рейки топливного насоса, поворотные втулки, поворачивает плунжер. Тем самым устанавливает определенное расстояние между отсечным отверстием и отсечной кромкой винтовой канавки, обеспечивая определенную цикловую подачу топлива.

Плунжер под действием кулачкового вала совершает возвратно-поступательное движение. При движении плунжера вниз нагнетательный клапан, нагруженный пружиной, закрыт и в надплунжерной полости создается разрежение.

После открытия верхней кромкой плунжера впускного отверстия во втулке топливо из топливного канала под давлением 0,05…0,1 МПа (0,5… 1 кгс/см2) от топливоподкачивающего насоса поступает в надплунжерное пространство (рис. 13,а).

В начале движения (рис. 49, б) плунжера вверх часть топлива вытесняется через впускное и отсечное отверстия втулки в топливоподводящий канал. Момент начала подачи топлива определяется моментом перекрытия впускного отверстия втулки верхней кромкой плунжера. С этого момента при движении плунжера вверх происходит сжатие топлива в надплунжерной полости, а после достижения давления, при котором открывается нагнетательный клапан,— в трубопроводе высокого давления и форсунке.

Рисунок 13.Схема работы насосной секции:

а — заполнение надплунжерной полости; б — начало подачи; в — конец подачи

Когда давление топлива в указанной полости становится более 20 МПа (200 кгс/см2), игла распылителя поднимается вверх и открывает доступ топлива к сопловым отверстиям распылителя, через которые и происходит впрыск топлива под высоким давлением в камеру сгорания.

При движении плунжера вверх, когда отсечная кромка винтовой канавки достигнет уровня отсечного отверстия, наступает момент окончания подачи топлива (рис. 13, а). При дальнейшем движении плунжера вверх надплунжерная полость через вертикальный канал, диаметральный канал, винтовую канавку сообщается с отсечным каналом. В результате этого давление в надплунжерной полости падает, нагнетательный клапан под действием пружины и давления топлива в штуцере насоса садится в седло и поступление топлива к форсунке прекращается, хотя плунжер еще может двигаться вверх. С понижением давления в топливопроводе ниже усилия, создаваемого мружинои, игла распылителя под действием пружины опускается вниз и перекрывает доступ топлива к сопловым отверстиям распылителя, прекращая тем самым подачу топлива в цилиндр двигателя. Просочившееся через зазор в паре игла — корпус распылителя топливо отводится через канал в корпусе форсунки к дренажному трубопроводу и далее в топливный бак.

Изменение цикловой подачи регулируется поворотом плунжера. При этом устанавливаются различные расстояния между отсечной кромкой плунжера и нижней кромкой отсечного отверстия. Поворот плунжера осуществляется рейкой, перемещающейся под действием все-режимного регулятора.

Угловой интервал между началом ш> дачи последовательно работающих секций топливного насоса обеспечивается относительным разворотом профилей кулачков этих секций на валу ТНВД.

ТНВД КАМАЗ: насос работает, как часы

Автомобили КАМАЗ оснащаются современными дизельными двигателями, в которых используются системы питания топливом отечественного и зарубежного производства, в том числе и аппаратура Common Rail от Bosch. Об устройстве и принципах работы топливной системы камских грузовиков, а также об ее особенностях, эксплуатации и обслуживании читайте в этой статье.

Общий взгляд на топливную систему КАМАЗ «Евро-2» и выше

Система питания топливом, работающая в дизельных силовых агрегатах грузовиков Камского автозавода, выполняет несколько основных функций:

• Безопасное хранение достаточного запаса топлива;
• Фильтрация топлива от различных механических загрязнений, а также очистка от воды;
• Подача и распыл топлива в цилиндрах (камерах сгорания) в установленные моменты времени.

Таким образом, топливная аппаратура является одной из основных систем двигателя, которая в принципе делает возможной его работу, а также обеспечивает достижение определенных характеристик — оборотов коленчатого вала, мощности, равномерности работы и других.

Топливная аппаратура (или система питания топливом) силовых агрегатов КАМАЗ «Евро-2» и «Евро-3» состоит из компонентов, часть из которых установлена непосредственно на двигателе, а часть — на раме и других частях транспортного средства. На машине расположены топливный бак, топливопроводы низкого давления, фильтр предварительной (грубой) очистки (он выполнен заодно с ручным насосом) и фильтр тонкой очистки. Непосредственно на моторе находятся топливный насос высокого давления (ТНВД), совмещенный с топливопрокачивающим насосом, магистрали высокого давления, форсунки и свечи электрофакельного устройства (ЭФУ, данная система обеспечивает пуск холодного мотора при температуре воздуха ниже -25°C).

Кроме того, топливная система работает в тесном взаимодействии с узлами другим систем: с всережимным регулятором оборотов двигателя, с системой очистки и подачи воздуха, деталями ГРМ, системой смазки и другими.

Сегодня на автомобилях КАМАЗ используется два типа топливной аппаратуры:

• Система с рядным ТНВД производства компании Bosch;
• Система с V-образным ТНВД производства ОАО «ЯЗДА» (Ярославский завод дизельной аппаратуры).

Принцип действия топливных систем обоих типов строится на одинаковых принципах и сводится к следующему. Топливо через расположенную на дне бака заборную трубку под действием пониженного давления, созданного топливопрокачивающим насосом, поступает в фильтр предварительной очистки и ручной топливоподкачивающий насос. Далее топливо подается на фильтр тонкой очистки и в ТНВД. На выходе из ТНВД топливо имеет высокое давление, с которым оно по магистралям подается на форсунки. Топливные форсунки производят распыление топлива в цилиндрах непосредственно перед прохождением поршней ВМТ. На входе в ТНВД установлен электромагнитный клапан, с помощью которого производится отбор топлива для работы электрофакельного устройства. Также от ТНВД и форсунок отходят возвратные магистрали, направляющие избытки топлива в бак.

Управление ТНВД осуществляется механическим (некоторые модели насосов Bosch) или электронным (некоторые насосы Bosch и все насосы ЯЗДА) блоком. Работой ТНВД управляет всережимный регулятор оборотов двигателя, который, в свою очередь, управляется с помощью электронного педального модуля. Таким образом, инженеры КАМАЗ ушли от традиционного механического акселератора, отдав предпочтение более современной и надежной электронике.

Отдельно нужно остановиться на устройстве и принципах работы некоторых компонентов топливной системы автомобилей КАМАЗ.

Фильтр предварительной очистки, совмещенный с топливоподкачивающим насосом. Оба этих компонента объединены в один узел, установленный на выходе топливного бака. Фильтр состоит из корпуса, внутри которого устанавливается сменный фильтрующий элемент, а в верхней части устанавливается ручной насос, входные и выходные патрубки и другие детали. Фильтр предварительной очистки задерживает частицы механических загрязнений размером от 30 мкм и более, а также очищает топливо от воды. Ручной насос необходим для прокачки топлива после длительной стоянки автомобиля, а также для удаления воздуха после замены фильтрующего элемента.

Топливопрокачивающий насос. Данный насос необходим для прокачки топлива через фильтры и для его подачи на ТНВД. Насос имеет традиционную поршневую конструкцию, он выполнен заодно с ТНВД, оба насоса имеют единый привод от коленвала двигателя.

Фильтр тонкой очистки топлива. Фильтр находится между топливопрокачивающим насосом и ТНВД, причем он располагается в самой высокой точке топливной системы, что обеспечивает наиболее простое удаление воздуха (для этого предназначен специальный клапан, который также является и предохранительным). Очистка топлива производится с помощью сменных фильтрующих элементов.

Топливные форсунки. Предназначены для распыления топлива в цилиндрах, благодаря чему образуется горючая топливно-воздушная смесь с определенной концентрацией топлива и воздуха. На сегодняшний день в двигателях КАМАЗ устанавливаются форсунки классической конструкции (механические, подъем иглы производится за счет давления топлива) с шестью распыляющими отверстиями производства ЯЗДА и АЗПИ (Алтайский завод прецизионных изделий). Всего в систему входит восемь форсунок — по одной на каждый цилиндр.

Топливопроводы. Магистрали низкого и высокого давления производятся из стальных трубок различного сечения. Магистрали низкого давления имеют внешний диаметр 10 мм при толщине стенок 1 мм, они рассчитаны на давление топлива от 4 до 20 атмосфер. Магистрали высокого давления изготавливаются из трубок внешним диаметром 7 мм и внутренним диаметром всего 2 мм, они рассчитаны на давление топлива до 300 и более атмосфер.

Также в состав системы подачи топлива входит несколько электромагнитных клапанов, тройник для сбора излишков топлива от форсунок и другие детали. А об основном узле топливной системы — ТНВД и его приводе — нужно рассказать более подробно.

Топливный насос высокого давления — сердце топливной системы

Как уже было сказано, в современных двигателях КАМАЗ используются V-образные ТНВД ЯЗДА и рядные ТНВД Bosch, однако они имеют один принцип работы.

Основу ТНВД независимо от его типа составляет нагнетательная секция, в которой находится плунжер с гильзой и нагнетательный клапан. Всего таких секций в насосе восемь — по одной на каждый цилиндр. В V-образном ТНВД секции расположены в два ряда по четыре штуки, в рядном — соответственно, в один ряд, поэтому первый тип насосов имеет меньшую длину при значительной ширине, а второй — большую длину при малой ширине.

Под нагнетательными секциями расположен кулачковый вал, обеспечивающий привод плунжеров и подачу топлива к форсункам в строго определенные моменты времени. Всего в насосе 8 секций, то есть — по одной секции на каждый цилиндр. И V-образные, и рядные насосы имеют один кулачковый вал, который также служит для привода топливопрокачивающего насоса и регулятора оборотов.

Как работает ТНВД? Все не так уж и сложно. Основу нагнетательной секции составляет плунжерная пара, состоящая из гильзы и движущегося в ней плунжера. В гильзе находятся отверстия впускного и выпускного каналов, а в самом плунжере — спиральная канавка, обеспечивающая слив излишков топлива. При опускании плунжера полость над ним заполняется топливом, которое поступает за счет топливопрокачивающего насоса. При поднятии плунжера некоторый объем топлива выдавливается через выпускной канал, но ровно до того момента, пока верхняя кромка плунжера не закроет отверстия каналов в гильзе. Далее происходит значительное (до 300 и более атмосфер) сжатие топлива, и при достижении определенного давления производится автоматическое открытие нагнетательного клапана, через который топливо поступает в форсунку. При дальнейшем движении плунжера вверх спиральная канавка открывает выпускной канал, и излишки топлива поступают в сливную магистраль — происходит отсечка. В начале слива топлива нагнетательный клапан закрывается, а при движении плунжера вниз полость над ним снова заполняется топливом.

Плунжер движется в гильзе благодаря соединенному с ним толкателю, который цилиндрической пружиной прижимается к своему кулачку вала. Также плунжер совершает не только колебательные движения, но и поворачивается на определенный угол вокруг своей продольной оси — благодаря этому обеспечивается установка угла опережения впрыска топлива и момента отсечки. Поворот плунжеров осуществляется специальной рейкой ТНВД, поэтому рейкой можно регулировать работу дизельного мотора.

Устройство привода ТНВД в силовых агрегатах КАМАЗ

Работа ТНВД, как и работа ГРМ и других систем, обеспечивается самим двигателем. Передача крутящего момента от коленвала на ТНВД осуществляется через несколько шестерен, расположенных в картере агрегатов. Верхняя шестерня непосредственно связана с валом привода ТНВД, который состоит из нескольких деталей:

• Ведущая полумуфта;
• Собственно вал привода;
• Ведомая (расположенная со стороны насоса) полумуфта с фланцем;
• Пакеты компенсационных пластин;
• Болты крепления.

Устроен вал следующим образом. Со стороны картера агрегатов на подшипнике закреплен короткий вал, на котором монтируется ведущая полумуфта. Полумуфта соединяется с валом привода через компенсационные пластины, собранные в пакет — данные пластины необходимы для компенсации несоосности деталей вала привода. Со стороны ТНВД вал также соединен с ведомой полумуфтой через компенсационные пластины.

Монтаж вала привода ТНВД производится по специальным меткам, предусмотренным на торце насоса, а также на ведомой полумуфте. Только правильная установка вала гарантирует согласованную работу ТНВД с коленвалом двигателя, если же вал сместится даже на незначительный угол в ту или иную сторону, то работа мотора будет нарушена из-за изменения угла опережения впрыска топлива.

Вал КАМАЗ является важным узлом в топливной системе двигателя, поэтому за ним, как и за насосом, необходимо следить и при появлении первых признаков неисправности производить ремонт или замену. Обычно вал продается в сборе, что значительно облегчает его замену и ремонт топливной системы в целом.

Обслуживание топливной системы КАМАЗ

Для нормальной работы топливной аппаратуры необходимо проводить ее регулярное ТО, которое в общих чертах сводится к следующему:

Важно отметить, что обслуживание ТНВД, особенно насосов Bosch, должно производиться только в специализированных сервисных центрах. Дело в том, что для обслуживания и регулировок ТНВД необходимо применение специальных стендов и приборов (в частности, моментоскопа для определения угла опережения впрыска). Кроме того, разборка и сборка ТНВД сама по себе довольно сложна и в случае ошибки можно легко вывести весь этот агргерат из строя.

Регулярное и грамотное обслуживание топливной системы — одно из условий надежной и бесперебойной работы двигателя, а значит, и эффективной эксплуатации грузовика.

Статья написана по материалам сайтов: vuzlit.ru, studwood.ru, www.autoopt.ru.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий