Виды топлива для автомобилей

Виды топлива для автомобилей

Данный раздел дает основные представления об отечественных топливах, причем особое внимание уделено их свойствам, определяющим необходимость применения моющих присадок и присадок-модификаторов к топливу.

1.1. ОБЩИЕ СВЕДЕНИЯ

1.2. БЕНЗИНЫ

Бензин — это смесь легкокипящих жидких углеводородов различного строе­ния с температурой кипения 35. 2000С, получаемая при перегонке нефти, осуш­ке природного газа, переработке твердых видов топлива и при вторичной пере­работке продуктов перегонки нефти (например, мазута). Наиболее важными для бензинов являются требования к детонационной стой­кости и фракционному составу, от которых зависят их эксплуатационные характе­ристики. Бездетонационная работа двигателя достигается применением бензина с требуемой детонационной стойкостью. Наименьшей детонационной стойкостью об­ладают нормальные парафиновые углеводороды, а наибольшей — ароматические углеводороды. Варьируя углеводородный состав, получают бензины с различной детонационной стойкостью, характеризуемый октановым числом (ОЧ). Октановое число — это цифра, показывающая антидетонационную стой­кость бензина. Чем выше ОЧ, тем выше стойкость бензина против детонации. Определение ОЧ производится на специальных моторных установках.

Суще­ствуют два метода определения ОЧ: — исследовательский (ОЧИ — октановое число по исследовательскому методу); — моторный (ОЧМ — октановое число по моторному методу). Численное значение ОЧИ больше ОЧМ. Буква А» означает, что бензин авто­мобильный. Численное значение — это октановое число бензина. Наличие после буквы «А» буквы «И» означает, что октановое число определено по исследователь­скому методу. Если после буквы «А» нет буквы «И», то октановое число определено по моторному методу. Российскими стандартами предусмотрены следующие мар­ки бензинов: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее важным конструктивным фактором, определяющим требования двигателя к октановому числу, является степень сжатия. Повышение степени сжатия двигателей позволяет улучшить их техни­ко-экономические и эксплуатационные показатели. При этом возрастает мощность и снижается удельный расход топлива. Однако с увеличением степени сжатия необходимо применять бензин с более высоким октановым числом. Поэтому важнейшим условием бездетонационной работы двигате­лей является соответствие октанового числа, применяемого бензина и сте­пени сжатия двигателя.

Следует подчеркнуть, что требуемое октановое число зависит не только от сте­пени сжатия, но еще от формы камеры сгорания, максимальной частоты вращения коленчатого вала, теплонапряженности двигателя, наличия наддува и других фак­торов. Поэтому, встречаются ДВС, у которых степень сжатия отличается на 1. 2 единицы, а бензин для них рекомендован один и тот же. Для повышения детонационной стойкости бензинов в их состав вводят анти­детонаторы — вещества, которые при добавлении к бензину в относительно не­больших количествах резко повышают его антидетонационную стойкость. К их числу относятся антидетонаторы на основе ароматических аминов, соедине­ний ферроцена и марганца или их смесь.

С фракционным составом связаны такие характеристики двигателя, как его пуск, образование паровых пробок в системе питания двигателя, прогрев и при­емистость, экономичность и долговечность работы. Учитывая противоречивые требования к фракционному составу бензина в части содержания низкокипящих фракций с позиций обеспечения пуска двигате­ля, с одной стороны, и образования паровых пробок, обледенения карбюратора и потерь на испарение — с другой. У нас в стране вырабатываются два вида бензинов — зимний и летний. Эти бензины имеют оптимальный фракционный состав для определенных темпе­ратурных условий и позволяют без осложнений эксплуатировать автомобили в различное время года. Все отечественные стандарты предусматривают содержание в бензинах серы (до 0,05. 0,10%) и фактических смол (до 30. 100 мг/л). Эти включения вызывают вредные отложения и коррозию деталей ДВС. В соответствии со стандартами бензины не должны содержать воду, механические примеси, водорастворимые кислоты и щелочи, однако на практике встречаются слу­чаи существенного отклонения от этих требований.

1.3. ДИЗЕЛЬНЫЕ ТОПЛИВА

Дизельное топливо (ДТ) для автомобильных дизелей изготавливают из дистиллятных фракций прямой перегонкой нефти, а также из дистиллятных фрак­ций, подвергнутых гидроочистке и депарафинизации с добавлением до 1% изопропилнитрата для повышения цетанового числа. ДТ состоит в основном из двух компонентов: легко воспламеняемой жидкости (цетана) и плоховоспламеняющегося метилнафталина. Наиболее важными эксплуатационными свойствами дизельного топлива яв­ляются его воспламеняемость и прокачиваемость. Воспламеняемость топлива характеризует его способность к самовос­пламенению. Цетановое число (ЦЧ) — это процентное содержание цетана в дизельном топливе по отношению к метилнафталину.

Цетановое число (ЦЧ) характеризует способность топлива к самовос­пламенению. Чем выше ЦЧ, тем лучше топливо самовоспламеняется. Повышение ЦЧ улучшает самовоспламеняемость топлива при конкретных условиях, что способ­ствует облегчению запуска дизеля. Оптимальный диапазон для ЦЧ = 45. 50 единиц. Если ЦЧ ниже 45, то это приводит к «жесткой» работе дизеля (см. Раздел 1, п. 5.6), а если выше 55, то топ­ливо слишком рано воспламеняется, не успев хорошо перемешаться с воздухом. Последнее ухудшает эффективность и полноту сгорания топлива, увеличивая тем самым его расход. В различных российских стандартах на дизтопливо ограничение по мини­мальному значению цетанового числа неодинаково и принадлежит диапазону 35. 45. По стандартам Швеции, например, цетановое число должно быть не ме­нее 47. 50, в Калифорнии — не менее 48. Прокачиваемость дизтоплива характеризует способность топлива к перете­канию в системе питания дизеля от топливного бака до распылителя форсунки. Прокачиваемость зависит от свойств применяемого дизтоплива (температуры помутнения, предельной температуры фильтруемости, температуры застывания, содержания механических примесей и воды) и конструктивных особенностей си­стемы питания и фильтрации топлива.

Тф — предельная температура фильтруемости — это температура, при ко­торой топливо при охлаждении в определенных условиях перестает проходить через специальный топливный фильтр.

Тп — температура помутнения — это температура, при которой в процессе охлаждения топливо теряет прозрачность.

Тп близка к Тф. Помутнение вызвано выпадением высокоплавких углеводо­родов (парафинов, алканов) в виде кристаллов, способных забить собой топлив­ные фильтры. Поэтому рабочая температура применения дизтоплива должна быть выше температуры его помутнения.

  • Л — летнее: для эксплуатации при температуре окружающего воздуха 0 0 С (Цельсия) и выше.
  • 3 — зимнее: а) для эксплуатации в умеренной климатической зоне при температуре окружающего воздуха -20 0 С и ниже (Тг = -35 0 С); б) для эксплу­атации в холодной климатической зоне при температуре окружающего воз­духа -30 0 С и ниже (Тг = -45 0 С).
  • А — арктическое: для эксплуатации при температуре окружающего воз­духа -45 0 С и ниже (Тг = -55 0 С).

Дизельные топлива, как и бензины, имеют условные обозначения. В обозначение летнего дизтоплива входит массовая доля серы и температура вспышки. Например, Л-0,2-40 означает: массовая доля серы 0,2%, темпера­тура вспышки 40 0 С. В обозначение зимнего дизтоплива входит массовая доля серы и температура застывания. Например, 3-0,4-35 означает: массовая доля серы 0,4%, температура застывания минус 35 0 С. В обозначение арктического дизтоплива входит только массовое содержание серы.

По сравнению с бензинами в отечественных дизтопливах содержание серы существенно больше (в 5-10 раз). Для дизтоплива содержание серы строго нор­мируется по двум составляющим: по общей сере (обычно не более 0,2. 0,5%) и меркаптановой сере (обычно не более 0,01%). При сгорании из серы образуются ее оксиды, которые оказывают коррозион­ное воздействие на металлы — детали ЦПГ. При низких температурах оксиды се­ры легко растворяются в капельках воды, образуя сернистую и серную кислоты.

Наиболее агрессивными по коррозии являются меркаптаны и сероводород. От содержания в дизтопливе серы существенно зависит срок службы дизеля. Чем больше серы, тем интенсивнее коррозионное изнашивание дизеля, поэтому в промышленно развитых странах содержание серы в дизтопливе ограничено более жесткими стандартами. Так, в Калифорнии содержание серы ограничено значе­нием 0,05%, что в 4. 10 раз меньше по сравнению с российскими видами дизтоп­лива, а в Швеции требования к содержанию серы еще более строгие.

Важным эксплуатационным свойством дизельного топлива является его склонность к образованию нагара и лаковых отложений в двигателе. Отложения приводят к нарушениям в работе двигателя, что ухудшает его тех­нико-экономические и экологические показатели. Количество вредных отложе­ний в двигателе возрастает при увеличении содержания в дизтопливе серы и сер­нистых соединений, фактических смол, непредельных и ароматических углеводо­родов (йодного числа), несгораемых неорганических соединений (зольности).

Повышение зольности топлива увеличивает износ деталей ЦПГ и топ­ливной аппаратуры дизеля.

Все отечественные стандарты не допускают наличие в дизтопливе воды и механических примесей. Однако на автозаправочных станциях этим требовани­ям дизтопливо соответствует крайне редко. Концентрация фактических смол в дизтопливе российскими стандартами ог­раничена и для разных топлив не должна превышать 200. 400 мг/л, т.е. в сред­нем она в 4 раза выше, чем у российских бензинов.

1.4. ДРУГИЕ ВИДЫ ТОПЛИВА

Альтернативные топлива — это природный газ, нефтяной углеводородный газ (пропан-бутановый), спирты, синтетическое топливо, водород, генераторный газ и др. Каждый вид топлива по сравнению с обычными нефтяными топливами имеет как преимущества, так и недостатки. Превалирование последних в настоящее время препятствует широкому распространению альтернативных топлив.

Автомобильное топливо и его применение

Данная работа показывает межпредметную связь химии с профессиональным циклом предметов по профессии «Автомеханик». В работе описаны основные виды автомобильного топлива, области его применения, процессы, происходящие при сгорании топлива.

Скачать:

Вложение Размер
avtomobilnoe_toplivo.zip 2.05 МБ

Предварительный просмотр:

Тема: «Автомобильное топливо и его применение»

Другие виды топлива

Принцип работы карбюраторного двигателя.

Принцип работы дизельного ДВС

Топливо, не содержащее в своём составе окислитель, часто называют горючее. Понятие топлива более общее, нежели горючее или горючее ископаемое, потому как включает в себя древесину и различные топливные смеси. В широком смысле — один из видов потенциальной энергии , энергоноситель .

Химическая или ядерная энергия топлива переводится в различные виды энергии, и чаще всего через преобразование выделяемого при реакциях тепла тепловыми двигателями .

Основной показатель топлива — теплотворная способность ( теплота сгорания ). Для целей сравнения видов топлива введено понятие условного топлива (теплота сгорания одного килограмма «условного топлива» (у.т.) составляет 29,3 МДж или 7000 ккал — что соответствует низшей теплотворной способности чистого антрацита.

Цель работы: изучить основные виды автомобильного топлива, его свойства, принцип сгорания топлива в основных видах двигателей

Тепловая энергия, совершающая полезную работу в двигателе внутреннего сгорания, получается в результате химических реакций между топливом и кислородом воздуха в процессе сгорания топлива в цилиндрах двигателя. В современных быстроходных двигателях процесс сгорания топлива протекает очень быстро — за десятые или сотые доли секунды. Соответственно столь же быстро должны проходить процессы подготовки смеси топлива с воздухом. Указанное обстоятельство предъявляет определенные требования к качеству топлив, применяемых в двигателях автомобилей.

Предпочтительно применение топлив, обладающих большей теплотой сгорания (табл. 1.1)

Теплота сгорания различных топлив

Теплота сгорания кДж/кг

Необходимое для сгорания количество воздуха, кг на 1 кг топлива

Температура помутнения определяет начало выпадения из топлива в виде кристаллов высокоплавких углеводородов (парафинов, алканов), которых в дизельных топливах значительно больше, чем в бензинах. Возникает опасность забивки топливных фильтров кристаллами парафиновых углеводородов. В связи с этим t помутнения должна быть несколько ниже возможной t применения топлива.

Температура застывания топлива соответствует такой предельной t, при которой топлива теряет свою текучесть. Этот показатель служит приблизительно ориентиром при определении возможных предельных условий применения топлив и в большей мере по этому показателю судят о возможностях заправки, транспортирования, слива и налива топлива.

Коэффициент фильтруемости характеризует срок службы фильтров тонкой отчистки топлива. Этот показатель равен отношению времени фильтрования последней порции топлива ко времени фильтрования первой порции при пропускании через бумажный фильтр определенного объема топлива. Значение коэффициента зависит от содержания в топливе механических примесей. Износ деталей примерно пропорционален содержанию в топливе общей серы. В зависимости от этого показателя топлива делят на 2 вида первый с содержанием серы до 0,2%, второй- с содержанием серы до 0,5%.

Важным эксплуатационным свойством дизельного топлива является его склонность к образованию нагара и лакоотложений в двигателе. На образование отложений влияют фракционный состав, содержания сернистых соединений, непредельных и ароматических углеводородов, смолистых соединений, а также неорганических примесей. Более тяжелые топлива, с большим содержанием серы и её соединений дают большее количество нагара. С увеличением содержания ароматических и непредельных углеводородов склонность топлив к нагарообразованию возрастает. Количество непредельных углеводородов регламентируется введением в стандарт показателя — йодного числа . С увеличением количества непредельных углеводородов йодное число возрастает. Количество смолистых веществ в дизельных топливах оценивается, как и в бензинах, количеством фактических смол. Склонность дизельного топлива к нагарообразованию оценивается его зольностью и коксуемостью. Зольность

Кроме того топливо должно: своевременно и полностью сгорать в цилиндрах двигателя и образовывать минимальное количество токсичных веществ в отработавших газах; сгорать с наименьшим количеством нагара в камере сгорания и не вызывать отложения во впускной системе двигателя; обладать противоизносными и антикоррозийными свойствами; обеспечивать быстрый и надежный пуск при различных температурах . Эффективность использования топлив в двигателях внутреннего сгорания в значительной мере определяется их эксплуатационными показателями, и в первую очередь такими, как испаряемость, воспламеняемость и горючесть. Испаряемость характеризуется в основном фракционным составом топлива (температурными пределами выкипания отдельных фракций топлива) и давлением насыщенных паров.

Воспламеняемость и горючесть определяются температурными и концентрационными пределами воспламенения, пределами устойчивого горения, температурой самовоспламенения, устойчивость против детонации.

Температурные и концентрационные пределы воспламенения характеризуют топливо с точки зрения их пожарной опасности при транспортировке и хранении. Пределы устойчивого горения — это пределы изменения состава топливовоздушной системы в двигателях, при которых обеспечивается устойчивое, полное и бездымное сгорание топлива в цилиндрах двигателя. Состав смеси характеризуется коэффициентом избытка воздуха, представляющим собой отношение массы воздуха, расходуемого двигателем к количеству воздуха, теоретически необходимому для сгорания подаваемого в двигатель количество топливо. Для карбюраторного двигателя предельные значения коэффициента избытка воздуха составляют 0,6- 1,2 и для дизельного 1,1- 1,5.

Температура самовоспламенения топлива — температура, при которой возникает быстрое нарастание скорости химической реакций, приводящие к воспламенению топлива без постороннего источника зажигания.

Детонационное (аномальное) сгорание топлива характерно главным образом для карбюраторных двигателей. В этом случае скорость сгорания примерно в 100 раз больше чем при нормальном сгорании.

К важным эксплуатационным свойствам относятся также прокачиваемость топлива, склонность к нагара — и лакоотложениям, коррозионная активность, физическая и химическая стабильность.

Прокачиваемость топлива определяется температурой его помутнения и застывания, вязкостью.

Склонность топлива к нагару и лакоотложениям зависит от содержания в топливе ароматических углеводородов, смолистых веществ, тетраэтилсвинца.

Коррозионная активность топлива и продуктов его сгорания определяется наличием в топливе коррозионно-активных веществ.

Физическая и химическая стабильность характеризуется потерями от испарения, склонностью к расслаиванию отдельных компонентов топлив, гигроскопичность, склонность к окислению в процессе хранения топлива.

К числу эксплуатационных свойств топлива отнесется и такие свойства, как пусковые, защитные, противоизносные и д.р.

Основные эксплуатационными свойства. Наиболее важными для бензинов является требования к детонационной стойкости.

Детонационной стойкость — важнейший показатель качества бензина, оказывающий в первую очередь влияние на работу двигателя. Детонация вызывается самовоспламенением наиболее удаленной от запальной свечи части бензиновоздушной смеси, горение которой приобретает взрывной характер. Условия для детонации наиболее благоприятные в той части камеры сгорания, где выше температура и больше пребывания смеси. Возникновению детонации способствуют повышение степени сжатия, увеличение угла опережения зажигания, повышенная t окружающего воздуха и его пониженная влажность, особенности конструкции камеры сгорания. Вероятность детонационного сгорания топлива возрастает при наличии нагара в камере сгорания и по мере ухудшения технического состояния двигателя. В результате детонации снижается

экономические показатели двигателя. уменьшается его мощность, ухудшается токсические показатели отработавших газов.

Бездетонационная работа двигателя достигается применением бензина с высокой детонационной стойкостью. Наименьший детонационной стойкостью обладают нормальные парафиновые углеводороды, наибольшей — ароматические. Остальные углеводороды, входящие в состав бензинов, по детонационной стойкости занимают промежуточное положение. Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью, которая характеризуется октановым числом. Важнейшим условием бездетонационной работы двигателей является соответствие требований к детонационной стойкости двигателя октановому числу применяемых бензинов.

Степень сжатия наиболее распространенных отечественных автомобилей ВАЗ, АЗЛК- 2140, ГАЗ-24, лежит в приделах 8,2-8,8. Эти автомобили рассчитаны на эксплуатацию на бензине АИ-93 с О.Ч.И 93. Совершенствование рабочего процесса и конструкции двигателя ВАЗ-2108 позволило повысить его степень сжатия до 9,0, обеспечив тем самым лучшие экономические и мощностные показатели при использовании того же бензина АИ-93.

Эксплуатация автомобиля на бензине с более низким о.ч, чем предусмотрено тех. условиями, вызывает детонацию, что нарушает нормальную работу двигателя, снижает ресурс и надежность. При длительной работе детонацией повышается t и увеличивается износ деталей двигателей. Это приводит к разрушению перемычек между канавками поршневых колец, прогару прокладки головки цилиндра, оплавлению поверхности днища поршней. Поэтому работа двигателей должна осуществляться строго на бензине с о.ч , рекомендуемым заводом — изготовителем. При кратковременным использовании бензина с меньшим о.ч ,чем предусмотрено для данного автомобиля, следует установить более позднее зажигание. При езде на таком бензине нельзя перегружать двигатель, не допускается резкая, динамичная езда, пользоваться следует в основном низкими передачами. При необходимости постоянной эксплуатации двигателей автомобилей ВАЗ и АЗЛК на бензине А-76 степень сжатия должна быть уменьшена до 7,0-7,2. Наиболее простой и распространенный способ снижения степени сжатия — установка под головку цилиндров между двумя штатными прокладками головки блока дополнительной прокладки из мягкого алюминия А5М толщиной 1 мм для двигателей автомобилей Ваз и 1,5 мм — для двигателей автомобилей АЗЛК. Степень сжатия двигателей автомобилей АЗЛК можно снизить установкой поршней с уменьшенной выпуклостью днища. При этом никаких других переделок двигателя не требуется. Естественно, мощность двигателя при этом уменьшается на 5-7л.с. (4-5 кВт), что влечет за собой некоторое ухудшение динамических и экономических показателей автомобилей.

Для автолюбителей интерес вопрос о детонационной стойкости бензинов, полученных смешением двух марок с различными октановыми числами. Октановое число смеси ( по моторному методу ) подсчитывается по формуле:

где Н и В – октановые числа ( по моторному методу) соответственно низко — и высокооктанового бензина; х- доля высокооктанового бензина в смеси, %.

В парке частных автомобилей сейчас существует еще значительная часть моделей, предназначенных для работы на бензине А-72 и даже на А -66. Бензин А-66 в настоящее время не выпускается, а объёмы производства бензина А-72 из года в год снижается, и к 1995 г. его выпуск должен прекратится. При переводе автомобилей, предназначенных для работы на бензине А- 66, на бензин А -76, необходимо увеличить степень сжатия двигателя ( до 7,0- 7,5) путем шлифовки головки блока цилиндров. При переводе автомобиля с бензина А-76 на бензин А-76 изменение степени сжатия не обязательно. При работе на бензине А-76 зажигание устанавливается точно по метке. Корректировать угол опережения зажигания на легкую детонацию в дорожных в дорожных условиях не следует. Пользуясь октан- корректором прерывателя-распределителя, допустимо увеличить угол опережения зажигания на 2-3 деления.

Для достижения детонационной стойкости бензинов в их состав вводят антидетонаторы. Антидетонаторами называют такие вещества, которые при добавлении к бензину в относительно небольших количествах резко повышают его детонационную стойкость. К их числу относятся металл органические соединения, т.е. соединения, в состав которых входит металл, связанный с органическим веществом. Наиболее эффективным антидетонатором, широко применяющимся при производстве бензинов, является тетраэтилсвинец ( ТЭС).

ТЭС — РЬ (С2Н50)4 -бесцветная прозрачная жидкость плотностью 1,65. В воде ГЭС не растворяется, но хорошо растворяется в бензине и других органических растворителях. ТЭС — сильно ядовитое вещество.

В чистом виде антидетонационные присадки к бензинам использовать не удаётся, т.к. продукты сгорания в виде нагара откладываются и накапливаются в камере сгорания и двигатель через короткое время может перестать работать. В связи с этим ТЭС добавляют в бензин в смеси с веществами — выносителями, образующими со свинцом и его оксидами при сгорании летучие вещества, которые удаляются из двигателя с отработавшими газами. Температура плавления этих соединений ниже температуры стенок камеры сгорания, поэтому они не конденсируются и не отлагаются в двигатели или отлагаются в незначительных количествах.

В качестве выносителей применяют вещества, содержащие бром и, в меньшей степени хлор. Смесь ТЭС и выносителя, которая применяется как антидетонатор, называется этиловой жидкостью. Автомобильные бензины, содержащие этиловую жидкость называются этилированными.

Этиловая жидкость — высокотоксичное ядовитое соединение . В целях обеспечения безопасности в этиловую жидкость добавляют специальные красители. Этилированные бензины А- 76 окрашены в желтый цвет, АИ-93 в оранжево-красный, АИ- 98 в синий.

Этиловая жидкость бывает двух марок Р-9 и П-2. Жидкость Р-9 представляет собой смесь тетраэтилсвинца с этилбромидом и хлорнафталином, П-2 смесь тетраэтилсвинца с дибромпропаном и хлорнафталином. При работе на этилированном бензине разгон должен быть более плавным, исключающим появление детонации в двигателе.

Приемистостью двигателя называют его способность обеспечивать быстрый разгон автомобиля. Чем меньше время прогрева двигателя, тем ниже расход бензина, не производительные затраты времени, а так же меньше износ детали двигателя.

Износ двигателя его экономичность в значительной мере зависят от наличия в бензинах тяжелых фракций углеводородов. Их количество характеризуется температурами конца кипения и перегонки 90% бензина. Если эти температуры высокие, то тяжелые фракции не успевают испарятся во впускной системе и поступают в цилиндры, в жидком виде. В результате часть их не успевает сгорать и экономичность двигателя уменьшается. Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло с трущихся поверхностей и ухудшают условия смазки. Поэтому, чем меньше температура конца кипения бензина и перегонки его 90% , тем лучше бензин с точки зрения его влияния на износ двигателя и экономичность. Норма для летнего бензина- 180 и 195 градусов и для зимнего не выше 160 и 185.

Способность бензина противостоять химическим превращениям называют химической стабильностью . Химическая стабильность определяется содержанием в них не придельных углеводородов, которые в силу их химической структуры легко взаимодействуют с кислородом воздуха с образованием высокомолекулярных смолистых веществ.

Процесс окисления бензина происходит сначала медленно, затем резко ускоряется. Период до резкого ускорения окисления называется индукционным периодом.

Марки и виды бензинов.

В зависимости от октанового числа устанавливают следующие марки бензинов: А-72 — с октановым числом не менее 72 А-76- не менее 76, АИ-93 — с октановым числом по исследовательскому методу не менее 93 АИ-98 — не менее 98

Автомобильные бензины за исключением АИ-98 подразделяются на виды: Летний — для применения во всех районах кроме северных и северо-восточных, в период с 1 апреля до 1 октября, в южных районах в течении всего года. Зимний — для применения в течениях всех сезонов в северных районах и остальных районах с 1 октября до 1 апреля.

Какие бывают альтернативные виды топлива

Использование продуктов переработки нефти для обеспечения автомобиля топливом уже давно считается нормой. Оно быстро возгорается и производит много энергии, поэтому отлично подходит для обеспечения движения автомобиля. Конечно, все ресурсы рано или поздно заканчиваются, поэтому сегодня активно разрабатываются альтернативные виды топлива для автомобилей. Это достаточно перспективная область изучения, которая также позволяет уменьшить наносимый природе вред.

Альтернативные виды топлива помогут уменьшить вред, наносимый окружающей среде

Современная ситуация

Замена классического бензина остаётся достаточно приоритетной сферой для будущих разработок, но сегодня уже существуют реальные альтернативы нефтяному горючему. Некоторые из них подходят для большого количества транспортных средств, другие же, напротив, используются лишь в специализированных моделях.

В начале автомобильного производства использовались паровые двигатели. Они могли перевозить большие грузы и обладали простой системой работы. Благодаря процессам закипания воды, образовавшийся пар направляется по специальным каналам, приводя в движение турбину или плунжер. Таким образом, поступательное движение преобразовывается в прямолинейное, по методу Ватта.

Многие считают такой вид топлива устаревшим, но в 2009 году в Великобритании был построен автомобиль, работающий по такому типу. Он обладает 12 котлами, создающими 360 лошадиных сил. Для нагревания жидкости использовалась смесь газолина и мазута — это в разы дешевле бензина.

Электроэнергия

Теория движения автомобиля от действия электричества зародилась ещё во время создания первых машин. Сегодня она стала новым поколением для современных транспортных средств. Достоинства очевидны:

  • не производятся выхлопные газы;
  • не нужно бензина;
  • минимальный риск воспламенения;
  • невысокая стоимость автомобиля.

Чтобы обеспечить движение машины, необходим источник энергии. Раньше это было серьёзной проблемой, ведь большие батареи доставляли много неудобств. Сегодня никель-металлогидридные батареи заменили на небольшие и удобные литий-ионные. Их аналоги применяются для питания ноутбуков или телефонов.

Поддержка решения

Одним из недавних прорывом стало анонсирование производителем BYD (Китай) нового поколения батарей — литий-фосфатных. Они имеют несколько меньшую ёмкость, но их производительность намного выше. Также такие аккумуляторы лишены эффекта памяти и устойчивы к высоким температурам и перегреву. Такие батареи не перемерзают.

Подобное альтернативное топливо для автомобилей используется в гибридных машинах. Кроме классического двигателя, они также оборудованы электроприводом. Настоящая технология экономит запасы горючего. Такой автомобиль подходит для подзарядки с устройствами Plug-in (подача электричества), что даёт ему большой прирост к производительности.

Одним из вариантов замены классического бензина является использование горючих углеводородов — газа. Чаще всего используется пропано-бутановая смесь, которая ещё называется нефтяным газом. Она добывается при образовании месторождений нефти. Такое топливо достаточно дешёвое, а мотор можно без проблем переработать под работу с ним. Сегодня такое альтернативное горючее широко распространено и для него созданы специальные заправки и мастерские.

В странах США и Европы газ пытаются заменить метаном. Это немного экологичней, но требует большей модификации двигателя. Несмотря на свои преимущества, такое топливо обладает следующими недостатками:

  • опасность возгораемости;
  • большой износ технической составляющей автомобиля;
  • низкая мощность мотора;
  • большая переработка двигателя;
  • высокий расход газа.

Современные производители смогли ликвидировать большинство подобных минусов (Volkswagen, Chrysler, Mercedes). Одной из особенностей такого вида горючего является возможность его создания непосредственно в машине. Такие газогенераторы работают на дровах или сельскохозяйственных отходах. В результате брожения вещества в специальном баке выделялось газообразное горючее. Правда, пока что такая альтернатива не даёт желанных результатов мощности.

Спирт

Давно известно, что спирт способен показывать неплохую горючесть, поэтому не раз рассматривался в роли топлива. Больше всего этанол получил популярность в качестве горючего в Бразилии. Он производился из сахарного тростника и древесины. Сегодня четверть транспортных средств этого региона использует такие альтернативные источники топлива в обиходе. Это снижает их общую зависимость от нефти.

Некоторые из стран Европы агитируют за производство метилового спирта. Он добывается из хвои и обладает более низкой стоимостью. Многие заправки имеют в своём ассортименте такое топливо, обозначая его индикатором «М». Стоит учитывать октановое число такого вещества, ведь оно показывает вместительность спирта. Под показатели М100 потребуется переработка двигателя автомобиля, так как он не предназначен для использования такого горючего.

Водород

Идею применять «гремучий газ» в форме топлива выдвинули ещё в ХХ веке. Тогда не существовало экономного способа производить водород, поэтому об этом методе подзабыли. Вскоре удалось решить эту проблему и сегодня даже небольшой завод может производить экологически чистое топливо.

В начале использования такого горючего была предпринята идея по сжиганию топлива, как и углеводорода. Такая реакция не была безопасной, но улучшенное решение вскоре нашли. После этого инженеры занимались вопросом о подаче топлива в цилиндры. Результат удивил всех, ведь из выхлопной трубы выходил чистый пар из воды, но мощность движения автомобиля была крайне низкой.

В наше время такие двигатели обладают большим КПД, но автомобили, которые их используют (в частности, BMW 7), стали производить на 200 лошадиных сил меньше мощности, но используют больше горючего — 15 литров. Также серьёзной проблемой стало хранение топлива, ведь ему необходим криогенный бак. С учётом всех необходимых доработок итоговая стоимость флагмана составила 1 миллион долларов.

Интересные особенности

Одним из необычных наблюдений была реакция между водородом и кислородом, после которой производились молекулу воды. Они же, в свою очередь, создавали небольшие заряды электричества. Благодаря этому были изобретены топливные ячейки. Увы, их перезаправка была не под силу рядовому пользователю и единственным способом использовать их была полная замена элементов. Такая технология несла за собой большие финансовые затраты.

Не так давно японскими учёными была предложена идея использовать в качестве горючего обычную воду. Процесс заключался в расщеплении её молекул с помощью электролиза, что и создавало топливо. Правда, такие транспортные средства показывали достаточно низкие результаты, проезжая всего 60 километров, расходуя большое количество энергии.

Нестандартный подход

Учёные из Индии выдвинули идею использовать как топливо сжатый воздух. По их словам, достаточно подключить автомобиль к насосной станции и дождаться, пока заполнятся баки. Транспортное средство не будет производить выхлопных газов, а машина сможет обладать малым весом.

Недостатком такого метода является низкая скорость машины. Полученная кинетическая энергия сможет производить скорость только в 60 км/час с проездом в 40 км. Также большая часть пространства будет просто занята баллонами для воздуха, поэтому серийного производства таких флагманов пока нет в планах.

«Натуральное» решение

В автопроме Европы активно обсуждается использование биодизеля. Его получают из масел специальной культуры — рапса. Правда, это растение плохо влияет на почву, поэтому его массовое выращивание запрещено.

Аналогичные решения предложили и в Восточной Европе, которая славится своим сельским хозяйством. Традиционное топливо решили заменить соломой, коровьим навозом и древесными опилками. С помощью дешёвых катализаторов можно получить высококачественный метан. Правда, остались всё те же проблемы — низкая скорость.

Чего ждать дальше

Все представленные альтернативы для топлива пока не получили широкого распространения, поскольку не обладают желаемой производительностью. Прогнозируется, что в середине столетия подавляющее количество автомобильного транспорта уже не будет использовать нефтяное топливо, хотя специалисты расходятся во мнениях, какое горючее его заменит.

Исходя из прогнозов специалистов касательно запасов нефти, учёные стараются придумывать всё более совершенные альтернативы нефтяному топливу. Не все из них безопасны или способны показать достойные результаты, поэтому требуются ещё большие доработки. Но некоторые автомобильные бренды уже способны предложить неплохие альтернативы, как Tesla, но они требуют больших финансовых затрат.

Если вы желаете поддерживать экологию окружающей среды или просто хотите поскорее перейти на доступную замену нефти, можно выбрать гибриды. Они ещё не являются полноценным экотранспортом, но уже значительно поддерживают настоящую сферу разработок.

Топливо: виды, марки, основные показатели качества

В настоящее время в России находится в эксплуатации более 40 млн единиц автомобильного транспорта. Большая часть парка машин оснащена бензиновыми (карбюраторными или инжекторными) двигателями внутреннего сгорания.

Современный автомобильный бензин должен удовлетворять требованиям, обеспечивающим экологичную и надежную работу двигателя:

• иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;

• иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;

• не изменять своего состава и свойств при длительном хранении и не оказывать вредного воздействия на детали топливной системы, резервуары, резинотехнические изделия и т.п.

Автомобильный бензин — это легковоспламеняющаяся горючая жидкость, в состав которой входят углеводороды, выкипающие при температуре от 35 до 200 °С. Важнейшим свойством бензина является его способность в состоянии газообразной смеси воспламеняться и сгорать со скоростью распространения фронта пламени 25 — 35 м/с. В некоторых случаях процесс горения может приобрести взрывной, детонационный характер. Мгновенное сгорание рабочей смеси нежелательно, так как вызывает вибрацию и перегрев деталей двигателя, преждевременный их износ, снижение мощности.

Способность бензина противостоять взрывообразному горению называется детонационной стойкостью. Она оценивается октановым числом. Для любого бензина октановое число определяют путем подбора смеси из двух эталонных углеводородов: изооктана — октановое число 100, и нормального гептана с октановым числом, равным 0, которая по детонационным свойствам эквивалентна испытуемому бензину. Процентное содержание в этой смеси изооктана принимают за октановое число.

Одним из принципов классификации различных марок бензина является октановое число. Существуют два метода его определения: исследовательский (ОЧИ — октановое число по исследовательскому методу) и моторный (ОЧМ — октановое число по моторному методу). Моторный метод лучше характеризует антидетонационные свойства бензина в условиях форсированной работы двигателя и его высокой теплонапряженности, исследовательский — при эксплуатации двигателя в городе, когда работа его связана с относительно невысокими скоростями, частыми остановками и меньшей теплонапряженностью.

Для повышения детонационной стойкости (повышения октанового числа) в процессе компаундирования можно увеличить в бензине долю высокооктановых компонентов. Однако это весьма дорогостоящий способ, поэтому используют более дешевый — введение в состав бензина специальных химических соединений — антидетонаторов. Наиболее эффективным антидетонатором является тетраэтилсвинец (ТЭС) — вещество крайне ядовитое. Чтобы предупредить образование в двигателе нагара, тетраэтилсвинец вводят вместе с выносителем. В результате образуются летучие вещества, которые удаляются из двигателя с отработавшими газами. При этом соединения свинца попадают в атмосферу, почву, воду, отравляя их.

Смесь тетраэтилсвинца с выносителем называется этиловой жидкостью. Бензин, содержащий этиловую жидкость, называется этилированным. Чтобы предупредить отравление им, этилированный бензин окрашивают в различные цвета.

Тетраэтилсвинец в качестве основного компонента антидетонатора (АД-ТЭС) используется уже 80 лет. Однако затраты на санитарно-гигиенические мероприятия, связанные с применением АД-ТЭС, более чем в 10 раз превышают экономический эффект от его применения. В США, ФРГ, Франции, Японии, Швеции и ряде других стран ТЭС запрещен. В России его перестали выпускать в 2001 г., и его применение тоже практически запрещено.

В настоящее время этилированный бензин заменяется неэтилированным. Это связано с использованием в автомобилях каталитических нейтрализаторов отработавших газов. Оксиды свинца разрушают нейтрализатор и выводят его из строя через несколько часов работы двигателя.

Нейтрализаторы обеспечивают соблюдение экологических требований к автотранспортным средствам, которые регламентируются правилами Европейской экономической комиссии ООН (табл.).

Требования Европейской экономической комиссии ООН к автомобильному бензину

Параметры Euro-2 Euro-3 Euro-4
Максимальное содержание, %:
бензола 5,0 1,0 1,0
серы (для Euro -3, -4 в промилле, %о) 0,05 150 30
ароматических углеводородов 42 30
олефиновых углеводородов 18 14
кислорода 2,3 2,7
Фракционный состав:
до 100°С перегоняется, %, не менее 46 46
до 150°С перегоняется, %, не менее 75 75
Давление насыщенных паров, кПа, не более 60 60
Наличие моющих присадок Обязательно Обязательно

Эти правила периодически пересматриваются в сторону ужесточения. Каждая новая модификация правил получает условное обозначение: Euro-1 (1993 г.), Euro-2 (1996 г.), Euro-3 (2000 г.), Euro-4 (предполагается принять в 2005 г.).

Октановое число бензина можно повысить, вводя либо антидетонаторы, либо присадки (добавки).

Антидетонаторы увеличивают октановое число, действуя как катализаторы на процесс сгорания топлива, поэтому их применяют в очень малых количествах по отношению к единице топлива. В этом качестве используются производные ферроцена (торговое название ФК-4, в 1994 г. разрешен Госстандартом РФ). Около 10 % валового производства бензина составляет бензин, содержащий ФК-4. Однако повышение нормативного содержания этого антидетонатора в бензине приводит к отложению абразивных частиц оксида железа на деталях камеры сгорания двигателя, в том числе на свечах зажигания, что вызывает различные неполадки.

Очень эффективен антидетонатор на основе циклопентадиенилтрикарбонила марганца — АД-ЦТМ. При его использовании износ двигателей в 1,5 раза меньше, чем при применении АД-ТЭС. Недавно Госстандарт РФ разрешил использование АД-ЦТМ. Наиболее перспективными можно считать антидетонаторы на основе карбонилов металлов.

В отличие от антидетонаторов присадки увеличивают октановое число бензина за счет своего количества. Присадки, как правило, имеют собственное октановое число выше 100.

В качестве октаноповышающих добавок в настоящее время используются метил-трет-бутиловый эфир (МТБЭ), этанол, метил-циклопентадиэтилтрикарбонил марганца (МЦТМ) и этил-трет-бутиловый эфир (ЭТБЭ). МТБЭ, например, повышает октановое число, а также снижает уровень СО в отработавших газах и способствует более полному сгоранию углеводородов.

Большие мощности по производству МТБЭ имеются в США, Индии, Тринидаде, Великобритании, во Франции, в последние годы в Китае. У нас в стране производство МТБЭ организовано на предприятии «Нижнекамскнефтехим». Недостатком МТБЭ является гигроскопичность, усиленный износ двигателя вследствие образования нагара, плохая совместимость с резинами и другими эластомерами. Кроме того, его высокая концентрация в бензине приводит к увеличению в выбросах концентрации формальдегида, оксида азота, ацетальдегида. Поэтому в Японии установлен норматив введения МТБЭ — не более 7 %. Аналогичные ограничения существуют и в странах Западной Европы.

ЭТБЭ — наиболее устойчивая присадка, она может быть использована даже как альтернативное топливо, однако ее промышленное производство пока не налажено.

За рубежом для улучшения эксплуатационных свойств автомобильного бензина широко используют многофункциональные присадки, уделяя особое внимание моющим. Применение моющих присадок обеспечивает нормальную работу двигателя при его эксплуатации. Впервые бензин с моющими присадками был разработан фирмой SHEVRON в 1954 г., но широкое распространение они получили лишь с введением принудительной системы вентиляции картера.

В России промышленное производство моющих и многофункциональных присадок к автомобильному бензину до 90-х годов отсутствовало. В середине 90-х годов ВНИИ НП разработал бензольную многофункциональную присадку «Афен» — композицию аминоамидов с добавлением поверхностно-активного вещества и бинарного растворителя. «Афен» предотвращает образование льда и коррозию топливной системы, смывает смолистые отложения в карбюраторе автомобиля и предотвращает их образование, что обеспечивает экономию бензина до 5 % и в 1,5 раза снижает концентрацию оксида углерода в отработавших газах. По моющим свойствам «Афен» не уступает зарубежным аналогам. Позже тем же институтом была разработана модификация «Афена» — многофункциональная присадка «Автомат» на базе более доступного сырья. По результатам испытаний она допущена к применению. На бензин с этой присадкой получен гигиенический сертификат.

Ассортимент присадок (добавок) и антиокислителей, используемых в России

Антидетонационные присадки (добавки)

Хайтек-3000 (фирма Ethyl). До 50 мг/л Мп

Моющие и многофункциональные присадки

Хайтек 4449 (фирма Ethyl). 0,035-0,06%

Керопур 3222 (фирма BASF). 0,035-0,06%

SAP 9500 (фирма Shell). 0,035 %

Наряду с октановым числом качество бензина формирует его фракционный состав, то есть преобладание той или иной группы углеводородов в природной нефти или в нефтепродуктах, а также присутствие в них серу-, азот- и кислородсодержащих соединений.

Если, к примеру, в бензине есть примесь серы, при его сгорании образуются сернистые соединения, которые загрязняют окружающую среду, вызывая появление «кислотных дождей». Водорастворимые кислоты и щелочи недопустимы, так как они вызывают коррозию двигателя.

Жидкие парафиновые углеводороды (от С5 до С15) почти все при перегонке нефти попадают в бензиновый дистиллят. Если в бензине присутствует значительное количество парафиновых углеводородов так называемого нормального строения, то есть таких, в которых атомы углерода соединены в виде прямой цепочки, качество бензина низкое. И наоборот, парафиновые углеводороды изомерного строения, с разветвленной цепочкой углеводородных атомов, имеют высокое октановое число, а бензин, содержащий такие углеводороды, отличается хорошей октановой характеристикой.

Содержание в бензине цикланов весьма желательно, так как они имеют более высокие октановые числа, чем парафиновые углеводороды нормального строения.

Ароматические углеводороды — бензол, толуол, ксилол, этил-бензол и другие — являются ценным сырьем для производства высокооктанового бензина, они обладают высокими октановыми числами.

Однако усиленное применение ароматических компонентов вместо этиловой жидкости для повышения октановой характеристики бензина может привести к увеличению выбросов ароматических углеводородов, в частности бензола, с отработавшими газами. Поэтому применение неэтилированного бензина на автомобилях без каталитических нейтрализаторов недопустимо.

С фракционным составом бензина связаны такие характеристики двигателя, как его пуск, образование паровых пробок в системе питания, прогрев и приемистость, экономичность и долговечность работы.

Пусковые характеристики двигателя улучшаются по мере увеличения содержания в бензине низкокипящих фракций. Однако при этом увеличивается вероятность образования паровых пробок. При нагревании бензина в системе питания двигателя его низкокипящие углеводороды испаряются, образуя пары, объем которых примерно в 150—200 раз больше объема жидкого бензина. Подача бензина в цилиндры из-за снижения массовой производительности уменьшается, горючая смесь обедняется, что приводит к потере мощности двигателя или даже к прекращению его работы.

Как устранить эти явления? Для бензина установлены ограничения на содержание низкокипящих фракций, регламентированы температура начала кипения бензина (для летних сортов), температура перегонки его 10 %, а также давление насыщенных паров. Кроме того, чтобы избежать образование паровых пробок, следует использовать марку бензина, соответствующую сезону.

Для бензина с высоким содержанием низкокипящих фракций характерны большие потери при хранении и транспортировании. Такой бензин может приводить к обледенению карбюратора, так как быстро испаряющиеся низкокипящие фракции отнимают теплоту из воздуха, в котором происходит испарение, и от металлических деталей впускной системы карбюратора. Чем больше низкокипящих фракций в бензине, тем ниже температура топливо-воздушной смеси.

С учетом противоречивых требований к фракционному составу бензина у нас в стране вырабатывают два вида бензина — зимний и летний. Автомобильный бензин, за исключением марки АИ-98, подразделяется на летний — для применения во всех районах, кроме северных и северо-восточных, в период с 1 апреля по 30 сентября (в южных районах допускается применять летний вид бензина в течение всего года), и зимний — для применения в течение всех сезонов в северо-восточных районах, а в остальных районах с 1 октября по 31 марта. Эти виды бензина имеют оптимальный фракционный состав для определенных температурных условий и позволяют без осложнений эксплуатировать автомобили в различное время года в различных географических районах и климатических условиях.

От наличия в бензине тяжелых фракций углеводородов в значительной мере зависят долговечность двигателя и его экономичность. Количество тяжелых фракций углеводородов обусловливает температуры конца кипения и перегонки 90 % бензина. Если эти температуры достаточно высоки, то тяжелые фракции не успевают испаряться во впускной системе и поступают в цилиндры двигателя в жидком виде. В результате часть их не успевает сгорать — экономичность двигателя снижается.

Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло с трущихся поверхностей и ухудшают условия их смазки, они попадают в картер двигателя и снижают вязкость масла, что также увеличивает износ двигателя. Несгоревшее в цилиндре топливо откладывается на поверхности камеры сгорания и поршней в виде нагара, который инициирует детонацию, калильное зажигание и другие нарушения в работе двигателя.

Поэтому, чем ниже температура конца кипения бензина и перегонки его 90 %, тем лучше бензин, двигатель долговечнее и экономичнее. Для бензина установлены нормы температуры перегонки его 90 % и конца его кипения: для летнего — соответственно не выше 180 и 195 °С, для зимнего — соответственно не выше 160 и 185 °С.

В процессе хранения бензин подвергается различным химическим превращениям, ведущим к ухудшению его эксплуатационных свойств. Способность бензина противостоять этим химическим превращениям называют химической стабильностью. Химическая стабильность бензина определяется главным образом содержанием в нем непредельных углеводородов, которые в силу их химической структуры легко взаимодействуют с кислородом воздуха, образуя высокомолекулярные смолистые вещества. На процесс окисления влияют также содержащиеся в бензине неуглеводородные соединения.

Оседая на штоках и тарелках клапанов, в камере сгорания при высокой температуре смолистые вещества превращаются в твердые отложения — нагары. Это приводит к нарушениям в работе двигателя и, как следствие, к снижению его мощности и экономичности. Поэтому необходимы ограничения на содержание в бензине высокомолекулярных смол.

Нагарообразование в двигателе возрастает также с увеличением содержания в бензине тетраэтилсвинца, серы и ароматических углеводородов. Содержание свинца и серы в бензине строго регламентируется. Ароматические углеводороды вследствие своей высокой детонационной стойкости являются желательной составляющей бензина, но из-за повышенного нагарообразования их количество в бензине следует ограничить.

Новыми нормативными документами предусмотрено ужесточение требований к показателям качества. Бензин с улучшенными экологическими свойствами должен содержать: бензола 1 — 3%, серы не более 0,03 %, ароматических углеводородов не более 45 %, олефиновых углеводородов не более 20 % и применяться только с моющими присадками. Кроме того, принято решение, что автомобильный бензин, выпускаемый не по ГОСТ, а по ТУ, проходит обязательную сертификацию на соответствие ГОСТ 51313—99.

В России эксплуатируется значительное число импортного дизельного автотранспорта. Предполагается, что дизели будут устанавливаться и на отечественных автомобилях УАЗ и «Газель». В Европе доля продаж машин, оснащенных дизелями, в среднем достигла почти 30 % (в Германии она составляет 85 %).

Дизельное топливо используется как на передвижных, так и на стационарных установках с дизелем, характеризующимся большими экономичностью, приемистостью, надежностью, долговечностью, меньшей пожароопасностью.

Работа дизеля существенно отличается от работы двигателя карбюраторного. Топливо подается в камеру сгорания через форсунки в капельно-жидком состоянии, смешивается с воздухом и воспламеняется от сжатия.

В качестве дизельного топлива используется нефтяная фракция, основу которой составляют углеводороды с температурой кипения 170 — 360 °С (против 35 — 200 °С для бензинов). В ней содержится по массе 87 % углерода, 13 % водорода, до 0,5 % серы, незначительное количество кислорода и азота. По внешнему виду дизельное топливо — это жидкость от желтого до темно-коричневого цвета с высокой удельной теплотой сгорания (примерно 43 МДж/кг), что позволяет автомобилям с дизельными двигателями иметь большой запас хода. По объемам производства дизельное топливо находится на втором месте, несколько уступая топочному мазуту и в 1,8 раза превосходя автомобильный бензин.

Дизельное топливо должно удовлетворять следующим требованиям:

• для обеспечения хорошего смесеобразования в цилиндрах двигателя иметь определенный фракционный состав. Так, 50 % зимнего дизельного топлива должны выкипать при температуре до 250 °С, летнего — до 280 °С. Чем больше в топливе легкокипящих фракций, тем быстрее оно испаряется после впрыска, обеспечивая лучшую полноту сгорания, малую дымность и более легкий пуск двигателя;

• хорошо течь, что необходимо для бесперебойной подачи в камеру сгорания, облегчения фильтрации и хорошего смесеобразования. Текучесть топлива характеризуется вязкостью при температуре 20 °С;

• температура застывания должна обеспечивать надежность работы двигателя зимой. При температуре ниже установленного значения нарушается прокачиваемость дизельного топлива и невозможна его подача в цилиндры двигателя. Температура застывания летнего топлива должна быть не выше минус 10 °С, зимнего — не выше минус 35 °С, арктического — не выше минус 55 °С;

• быстро воспламеняться и плавно сгорать. Воспламенение топлива, поданного в камеру сгорания, происходит не сразу. Между моментом впрыскивания и воспламенением происходит распыление топлива, перемешивание его с воздухом, нагревание, испарение и окисление. В результате накапливается тепло, повышается температура — топливо воспламеняется. Температуру, до которой нужно нагреть топливо в смеси с кислородом воздуха, чтобы началось его горение, называют температурой самовоспламенения. Чем ниже температура самовоспламенения, тем легче запускается холодный двигатель;

• иметь диапазон цетанового числа (ЦЧ) 45 — 50 единиц. Чем короче период задержки самовоспламенения, тем плавнее и эффективнее сгорает топливо. Этот период оценивается цетановым числом, т.е. процентным содержанием (по объему) цетана (ЦЧ-100) в искусственно приготовленной смеси с α -метилнафталином (ЦЧ-0). Для повышения ЦЧ, особенно для топлива, используемого при низких температурах, к нему добавляют специальные присадки — изопропилнитраты.

Кроме того, дизельное топливо должно обладать способностью обеспечивать чистоту топливоподающей системы, деталей двигателя, не вызывать их коррозии, полностью сгорать, не образуя дыма, быть стабильным при хранении. Эти свойства в стандартах нормируются такими показателями качества, как коксовое число, температура вспышки, фильтруемость, наличие механических примесей и воды, содержание серы, кислотность.

Коксовое число характеризует способность топлива при температуре 800 — 900 °С без доступа воздуха образовывать твердый остаток — кокс. Коксуемость зависит от наличия в топливе смолистых соединений, его вязкости и фракционного состава.

Температура вспышки определяет степень пожароопасности топлива при транспортировании, хранении и применении. Желательно, чтобы она была как можно более высокой.

Фильтруемость дизельного топлива показывает его способность предотвращать засорение фильтров и характеризуется специальным коэффициентом. Чем ближе коэффициент фильтруемости к единице, тем выше качество дизельного топлива.

Содержание механических примесей и воды в дизельном топливе приводит к износу деталей и образованию ледяных пробок в зимнее время года.

Отечественная нефтеперерабатывающая промышленность в соответствии с ГОСТ 305 — 82 вырабатывает дизельное топливо трех марок:

Л — летнее, применяется при температуре окружающего воздуха выше 0 °С;

3 — зимнее, применяется при температуре до минус 30 °С;

А — арктическое, применяется при температуре до минус 50 °С.

Коррозионные свойства (кислотность) топлива зависят от содержания в нем органических кислот и серы, содержание их строго ограничивается.

Дизельные топлива, как и бензины, имеют условные обозначения. Например, Л-0,2-40: летнее, содержание серы 0,2%, температура вспышки 40 °С; 3-0,4-35: зимнее, содержание серы 0,4 %, температура застывания минус 35 °С. В обозначение арктического топлива входит только содержание серы.

Статья написана по материалам сайтов: nsportal.ru, carextra.ru, znaytovar.ru.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий